Semantic provenance for eScience - Managing the deluge of scientific data

被引:49
|
作者
Sahoo, Satya S. [1 ]
Sheth, Amit [1 ]
Henson, Cory [1 ]
机构
[1] Wright State Univ, Knoesis Ctr, Dayton, OH 45435 USA
关键词
D O I
10.1109/MIC.2008.86
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Provenance information in eScience is metadata that's critical to effectively manage the exponentially increasing volumes of scientific data from industrial-scale experiment protocols. Semantic provenance, based on domain-specific provenance ontologies, lets software applications unambiguously interpret data in the correct context. The semantic provenance framework for eScience data comprises expressive provenance information and domain-specific provenance ontologies and applies this information to data management. The authors' "two degrees of separation" approach advocates the creation of high-quality provenance information using specialized services. In contrast to workflow engines generating provenance information as a core functionality, the specialized provenance services are integrated into a scientific workflow on demand. This article describes an implementation of the semantic provenance framework for glycoproteomics.
引用
收藏
页码:46 / 54
页数:9
相关论文
共 50 条
  • [31] The Challenges of Semantic Interoperability in the Era of eScience on the Web
    de Almeida Campos, Maria Luiza
    Campos, Linair Maria
    Barbosa, Nilson Theobald
    KNOWLEDGE ORGANIZATION, 2020, 47 (08): : 680 - 695
  • [32] Cell-based Provenance for Scientific Data
    Park, Juyeong
    Yoshikawa, Masatoshi
    Kato, Hiroyuki
    2017 ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL 2017), 2017, : 289 - 290
  • [33] Visualizing Large Scale Scientific Data Provenance
    Chen, Peng
    Plale, Beth
    2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC), 2012, : 1385 - 1386
  • [34] A Scientific Data Provenance Harvester for Distributed Applications
    Stephan, Eric
    Raju, Bibi
    Elsethagen, Todd
    Pouchard, Line
    Gamboa, Carlos
    2017 NEW YORK SCIENTIFIC DATA SUMMIT (NYSDS), 2017,
  • [35] Toward the modeling of data provenance in scientific publications
    Mahmood, Tariq
    Jami, Syed Imran
    Shaikh, Zubair Ahmed
    Mughal, Muhammad Hussain
    COMPUTER STANDARDS & INTERFACES, 2013, 35 (01) : 6 - 29
  • [36] Temporal representation for mining scientific data provenance
    Chen, Peng
    Plale, Beth
    Aktas, Mehmet S.
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2014, 36 : 363 - 378
  • [37] Visualizing Large Scale Scientific Data Provenance
    Chen, Peng
    Plale, Beth
    2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC), 2012, : 1388 - 1388
  • [38] Visualizing Large Scale Scientific Data Provenance
    Chen, Peng
    Plale, Beth
    2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC), 2012, : 1387 - 1387
  • [39] RDFPROV: A relational RDF store for querying and managing scientific workflow provenance
    Chebotko, Artem
    Lu, Shiyong
    Fei, Xubo
    Fotouhi, Farshad
    DATA & KNOWLEDGE ENGINEERING, 2010, 69 (08) : 836 - 865
  • [40] Managing Provenance Data in Knowledge Graph Management Platforms
    Kleinsteuber, Erik
    Al Mustafa, Tarek
    Zander, Franziska
    König-Ries, Birgitta
    Babalou, Samira
    Datenbank-Spektrum, 2024, 24 (01) : 43 - 52