Asymptotic theory for the inference of the latent trawl model for extreme values

被引:0
|
作者
Courgeau, Valentin [1 ]
Veraart, Almut E. D. [1 ]
机构
[1] Imperial Coll London, Dept Math, 180 Queens Gate, London, England
关键词
central limit theorem; generalized method of moments; generalized Pareto distribution; pairwise likelihood estimation; trawl process; DISTRIBUTIONS; EXCEEDANCES; ROBUST; TIME; GMM;
D O I
10.1111/sjos.12563
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article develops statistical inference methods and their asymptotic theory for the latent trawl model for extremes, which captures serial dependence in the time series of exceedances above a threshold. We review two methods based on pairwise likelihood and show that they underestimate the serial dependence in the extremes. We propose two generalized method of moments procedures based on auto-covariance matching to overcome this shortcoming. Out of those four inference approaches, two are single-stage strategies while the others have two stages, and we provide central limit theorems in the sense of weakly approaching sequences of distributions for all of them. This additional flexibility ensures good behavior between the estimators and estimates of the limiting distribution. In an empirical illustration using London air pollution data, we find that the two-stage auto-covariance matching scheme yields a high-quality inference. It comprises two interpretable steps and correctly captures the serial dependence structure of extremes while performing on par with other methods in terms of marginal fit.
引用
下载
收藏
页码:1448 / 1495
页数:48
相关论文
共 50 条
  • [31] THE ASYMPTOTIC-BEHAVIOR OF EXTREME VALUES OF STATIONARY-SEQUENCES
    OBRIEN, GL
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1985, 19 (01) : 52 - 52
  • [32] Variational distance for asymptotic distribution of extreme values (modulo one)
    Qi, Yongcheng
    Beijing Daxue Xuebao Ziran Kexue Ban/Acta Scientiarum uaturalium Universitatis Pekinensis, 1997, 33 (01): : 32 - 41
  • [33] Asymptotic theory and wild bootstrap inference with clustered errors
    Djogbenou, Antoine A.
    MacKinnon, James G.
    Nielsen, Morten Orregaard
    JOURNAL OF ECONOMETRICS, 2019, 212 (02) : 393 - 412
  • [34] GEOMETRICAL-THEORY OF ASYMPTOTIC ANCILLARITY AND CONDITIONAL INFERENCE
    AMARI, S
    BIOMETRIKA, 1982, 69 (01) : 1 - 17
  • [36] Alternative asymptotic inference theory for a nonstationary Hawkes process
    Kwan, Tsz-Kit Jeffrey
    Chen, Feng
    Dunsmuir, William T. M.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2023, 227 : 75 - 90
  • [37] Latent State Inference in a Spatiotemporal Generative Model
    Karlbauer, Matthias
    Menge, Tobias
    Otte, Sebastian
    Lensch, Hendrik P. A.
    Scholten, Thomas
    Wulfmeyer, Volker
    Butz, Martin, V
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT IV, 2021, 12894 : 384 - 395
  • [38] Asymptotic Analysis of a Matrix Latent Decomposition Model
    Mantoux, Clement
    Durrleman, Stanley
    Allassonniere, Stephanie
    ESAIM-PROBABILITY AND STATISTICS, 2022, 26 : 208 - 242
  • [39] Variational inference for the latent shrinkage position model
    Gwee, Xian Yao
    Gormley, Isobel Claire
    Fop, Michael
    STAT, 2024, 13 (02):
  • [40] Asymptotic inference for an unstable spatial ar model
    Baran, S
    Pap, G
    van Zuijlen, MCA
    STATISTICS, 2004, 38 (06) : 465 - 482