A posteriori error estimates taking into account indeterminacy of the problem data

被引:0
|
作者
Repin, SI [1 ]
机构
[1] Russian Acad Sci, VA Steklov Math Inst, St Petersburg Branch, St Petersburg 191011, Russia
关键词
D O I
10.1515/156939803322681167
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In many cases, values of the problem data (coefficients of a differential equation, boundary conditions, and right-hand sides) are not given exactly. In practical problems, we only know that they belong to certain sets of possible data values. Therefore estimation of errors of the approximate solution must take into account not only the approximation error, but also those arising due to indeterminacy of the data. The objective of this paper is to introduce a general scheme for deriving a posteriori estimates of this type. The method is based upon using functional-type a posteriori estimates that have been earlier derived in [5, 6, 8] and some other papers for boundary-value problems with operators of elliptic type. Estimates obtained in the paper are of two types. They show the errors in the worst- and best-case situations depending on the way the data error is combined with the approximation one.
引用
收藏
页码:507 / 519
页数:13
相关论文
共 50 条
  • [1] A posteriori error estimates for the Steklov eigenvalue problem
    Armentano, Maria G.
    Padra, Claudio
    [J]. APPLIED NUMERICAL MATHEMATICS, 2008, 58 (05) : 593 - 601
  • [2] A posteriori error estimates for a Steklov eigenvalue problem
    Sun, LingLing
    Yang, Yidu
    [J]. ADVANCED MATERIALS AND PROCESSES II, PTS 1-3, 2012, 557-559 : 2081 - 2086
  • [3] A posteriori error estimates for a Maxwell type problem
    Anjam, I.
    Mali, O.
    Muzalevsky, A.
    Neittaanmaki, R.
    Repin, S.
    [J]. RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2009, 24 (05) : 395 - 408
  • [4] A POSTERIORI ERROR-ESTIMATES FOR THE STOKES PROBLEM
    BANK, RE
    WELFERT, BD
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (03) : 591 - 623
  • [5] A posteriori error estimates for the generalized Stokes problem
    Repin S.
    Stenberg R.
    [J]. Journal of Mathematical Sciences, 2007, 142 (1) : 1828 - 1843
  • [6] A Posteriori Error Estimates on Stars for Convection Diffusion Problem
    Achchab, B.
    Agouzal, A.
    Bouihat, K.
    [J]. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2010, 5 (07) : 67 - 72
  • [7] A posteriori error estimates for the Brinkman–Darcy–Forchheimer problem
    Toni Sayah
    [J]. Computational and Applied Mathematics, 2021, 40
  • [8] On the functional type a posteriori error estimates for the stokes problem
    Gorshkova, E.
    Repin, S.
    [J]. ECCOMAS - Eur. Congr. Comput. Methods Appl. Sci. Eng.,
  • [9] A Posteriori Error Estimates for Maxwell's Eigenvalue Problem
    Boffi, Daniele
    Gastaldi, Lucia
    Rodriguez, Rodolfo
    Sebestova, Ivana
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (02) : 1250 - 1271
  • [10] A Posteriori Error Estimates for Maxwell’s Eigenvalue Problem
    Daniele Boffi
    Lucia Gastaldi
    Rodolfo Rodríguez
    Ivana Šebestová
    [J]. Journal of Scientific Computing, 2019, 78 : 1250 - 1271