OPTIMIZATION OF HYPER PARAMETERS IN MACHINE LEARNING TECHNIQUES FOR AIR QUALITY PREDICTIVE ANALYSIS

被引:0
|
作者
Patil, Basamma Umesh [1 ,2 ]
Ashoka, D., V [3 ]
Prakash, Ajay B., V [4 ]
机构
[1] VTU, JSS Acad Tech Educ, SJB Inst Technol, Dept CSE, Bengaluru, Karnataka, India
[2] VTU, JSS Acad Tech Educ, CSE Res Ctr, Bengaluru, Karnataka, India
[3] VTU, JSS Acad Tech Educ, Dept ISE, Bengaluru, Karnataka, India
[4] VTU, SJB Inst Technol, Dept CSE, Bengaluru, Karnataka, India
关键词
machine learning; meteorological data; pollutant concentration; air quality index; data integration; hyper parameter; air quality prediction;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To reduce health related problems due to air pollution, there is a need of effective air quality prediction. In this regard, enhanced AQI (Air Quality Index) prediction machine learning models are proposed. Datasets from different domains like air pollution concentrations and meteorological data are collected and integrated. Machine Learning models such as k-Nearest Neighbors, XGBoost, Support Vector Machine and Decision Tree models have been effectively applied. Optimization of hyper parameters for various machine learning models has been carried out. From obtained results, it is observed that XGBoost gives better results compared to other models with least error rate of 1.6.
引用
收藏
页码:73 / 86
页数:14
相关论文
共 50 条
  • [31] Machine learning-based prediction of air quality index and air quality grade: a comparative analysis
    Aram, S. A.
    Nketiah, E. A.
    Saalidong, B. M.
    Wang, H.
    Afitiri, A. -R.
    Akoto, A. B.
    Lartey, P. O.
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2024, 21 (02) : 1345 - 1360
  • [32] Analysis of a microwave filter parameters for design optimization via machine learning
    Araujo, J. A., I
    Barboza, Amanda G.
    Llamas-Garro, Ignacio
    Cavalcanti Filho, P. H. B.
    Cavalcanti, Camila da S.
    Barbosa, D. C. P.
    de Melo, Marcos Tavares
    de Oliveira, J. M. A. M.
    [J]. 2023 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE, IMOC, 2023, : 100 - 102
  • [33] Prediction of Quality of Service Parameters Using Aggregate Software Metrics and Machine Learning Techniques
    Tripathi, Manish K.
    Chaubisa, Divyanshu
    Kumar, Lov
    Neti, Lalita Bhanu Murthy
    [J]. IEEE INDICON: 15TH IEEE INDIA COUNCIL INTERNATIONAL CONFERENCE, 2018,
  • [34] Prediction of quality parameters of a dry air separation product using machine learning methods
    Zogala, Alina
    Rzychon, Maciej
    [J]. GOSPODARKA SUROWCAMI MINERALNYMI-MINERAL RESOURCES MANAGEMENT, 2019, 35 (02): : 119 - 138
  • [35] Comparative Analysis of Machine Learning Algorithms for Predicting Air Quality Index
    Kekulanadara, K.M.O.V.K.
    Kumara, B.T.G.S.
    Kuhaneswaran, Banujan
    [J]. 2021 From Innovation To Impact, FITI 2021, 2021,
  • [36] Air quality prediction by machine learning models: A predictive study on the indian coastal city of Visakhapatnam
    Ravindiran, Gokulan
    Hayder, Gasim
    Kanagarathinam, Karthick
    Alagumalai, Avinash
    Sonne, Christian
    [J]. Chemosphere, 2023, 338
  • [37] An Explainable Artificial Intelligence Framework for the Predictive Analysis of Hypo and Hyper Thyroidism Using Machine Learning Algorithms
    Md. Bipul Hossain
    Anika Shama
    Apurba Adhikary
    Avi Deb Raha
    K. M. Aslam Uddin
    Mohammad Amzad Hossain
    Imtia Islam
    Saydul Akbar Murad
    Md. Shirajum Munir
    Anupam Kumar Bairagi
    [J]. Human-Centric Intelligent Systems, 2023, 3 (3): : 211 - 231
  • [38] Forecasting the impact of meteorological parameters on air pollutants in Andhra Pradesh using machine learning techniques
    Teja, Kambhampati
    Mozumder, Ruhul Amin
    Laskar, Nirban
    [J]. ENVIRONMENTAL QUALITY MANAGEMENT, 2023, 32 (04) : 327 - 337
  • [39] Air quality analysis and PM2.5 modelling using machine learning techniques: A study of Hyderabad city in India
    Mathew, Aneesh
    Gokul, P. R.
    Raja Shekar, Padala
    Arunab, K. S.
    Ghassan Abdo, Hazem
    Almohamad, Hussein
    Abdullah Al Dughairi, Ahmed
    [J]. COGENT ENGINEERING, 2023, 10 (01):
  • [40] Exploiting Parameters Learning for Hyper-parameters Optimization in Deep Neural Networks
    Fraccaroli, Michele
    Lamma, Evelina
    Riguzzi, Fabrizio
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2022, 364