Evidence of Copper Separation in Lithiated Cu6Sn5 Lithium-Ion Battery Anodes

被引:14
|
作者
Tan, Xin F. [1 ]
Yang, Wenhui [2 ]
Aso, Kohei [2 ]
Matsumura, Syo [2 ]
McDonald, Stuart D. [1 ]
Nogita, Kazuhiro [1 ]
机构
[1] Univ Queensland, Sch Mech & Min Engn, NS CMEM, Brisbane, Qld 4072, Australia
[2] Kyushu Univ, Dept Appl Quantum Phys & Nucl Engn, Fukuoka 8190395, Japan
关键词
lithium-ion battery; anode; intermetallic; Cu6Sn5; C-s-corrected transmission electron microscopy; LI;
D O I
10.1021/acsaem.9b02014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Intermetallics such as Cu6Sn5, NiSi2, and CuGa2 etc., are promising candidate materials to replace carbon-based lithium-ion battery anodes. However, the lithiation reactions of these anodes often involve the separation of the inactive phases, a slow process that retards the lithiation kinetics and deactivates their role as a stress buffer. This research visualizes the separated Cu in a lithiated Cu6Sn5 anode by advanced transmission electron microscopy techniques. Cu nanospheres of 3-4 nm are found homogeneously distributed in both Li(13+y) Sn-5 and Li13Cu6Sn5 phases, suggesting that Cu is transported by long-range diffusion from the reaction site at the Li(13+y)Sn5/Li13Cu6Sn5 phase boundaries.
引用
收藏
页码:141 / 145
页数:9
相关论文
共 50 条
  • [31] Rapid fabrication of tin-copper anodes for lithium-ion battery applications
    Tan, Xin Fu
    Belyakov, Sergey A.
    Su, Te-Cheng
    Gu, Qinfen
    Liu, Shiqian
    S.D., McDonald
    C.M., Gourlay
    H., Yasuda
    S., Matsumura
    K., Nogita
    [J]. Journal of Alloys and Compounds, 2021, 867
  • [32] Rapid fabrication of tin-copper anodes for lithium-ion battery applications
    Tan, Xin Fu
    Belyakov, Sergey A.
    Su, Te-Cheng
    Gu, Qinfen
    Liu, Shiqian
    McDonald, Stuart D.
    Gourlay, Christopher M.
    Yasuda, Hideyuki
    Matsumura, Syo
    Nogita, Kazuhiro
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 867
  • [33] Direct electrodeposition of CU2Sb for lithium-ion battery anodes
    Mosby, James M.
    Prieto, Amy L.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (32) : 10656 - 10661
  • [34] Direct electrodeposition of Cu2Sb for lithium-ion battery anodes
    Mosby, James M.
    Prieto, Amy L.
    [J]. Journal of the American Chemical Society, 2008, 130 (32): : 10656 - 10661
  • [35] Morphology Control and Cycling Stability of Sn Nanostructures and Sn/RGO Composites as Lithium-Ion Battery Anodes
    Li, Yang
    Shi, Jiawei
    Liang, Ying
    [J]. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (03): : 2366 - 2378
  • [36] Characteristic performance of SnO/Sn/Cu6Sn5 three-layer anode for Li-ion battery
    Wang, Shulan
    Zhao, Wenzhi
    Wang, Yan
    Liu, Xuan
    Li, Li
    [J]. ELECTROCHIMICA ACTA, 2013, 109 : 46 - 51
  • [37] Fast lithium transport in PbTe for lithium-ion battery anodes
    Wood, Sean M.
    Klavetter, Kyle C.
    Heller, Adam
    Mullins, C. Buddie
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (20) : 7238 - 7243
  • [38] Thermal expansion of Cu6Sn5 and (Cu,Ni)6Sn5
    Mu, Dekui
    Read, Jonathan
    Yang, Yafeng
    Nogita, Kazuhiro
    [J]. JOURNAL OF MATERIALS RESEARCH, 2011, 26 (20) : 2660 - 2664
  • [39] Thermal expansion of Cu6Sn5 and (Cu,Ni)6Sn5
    Dekui Mu
    Jonathan Read
    Yafeng Yang
    Kazuhiro Nogita
    [J]. Journal of Materials Research, 2011, 26 : 2660 - 2664
  • [40] γ-Graphyne nanotubes as promising lithium-ion battery anodes
    Ma, Jiapeng
    Yuan, Yuan
    Wu, Si
    Lee, Jin Yong
    Kang, Baotao
    [J]. APPLIED SURFACE SCIENCE, 2020, 531