Delayed emission of cold positronium from mesoporous materials

被引:37
|
作者
Cassidy, D. B. [1 ]
Hisakado, T. H. [1 ]
Meligne, V. E. [1 ]
Tom, H. W. K. [1 ]
Mills, A. P., Jr. [1 ]
机构
[1] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
来源
PHYSICAL REVIEW A | 2010年 / 82卷 / 05期
基金
美国国家科学基金会;
关键词
ANNIHILATION LIFETIME; SLOW POSITRONS; THIN; DIFFUSION;
D O I
10.1103/PhysRevA.82.052511
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is well known that ortho-positronium (ortho-Ps) atoms are emitted with high efficiency from various porous materials following the implantation of positrons. Since the ortho-Ps lifetime in a mesoporous material may be a substantial fraction of the ortho-Ps vacuum lifetime (142 ns), the time dependence of Ps emission may have to be considered when conducting certain types of experiments, such as time of flight measurements or pulsed ortho-Ps-laser interactions, when using this kind of target as a positronium source. By taking into account the positron implantation profile and subsequent Ps diffusion and decay in a mesoporous film we calculate the time dependent ortho-Ps emission rate Gamma(t), which in turn allows us to establish the total annihilation rate, arising from the decay of ortho-Ps both inside and outside the sample. Using time-delayed laser spectroscopy and single-shot lifetime measurements we have directly probed the rate at which Ps is emitted into vacuum from a target with similar to 3-nm diameter pores and have observed delayed ortho-Ps emission that is consistent with our model. From the ortho-Ps decay spectrum we find that, whereas a simple two-component lifetime fit gives a short lifetime of 25.3 +/- 0.3 ns, an analysis that properly takes into account the emission rate yields an ortho-Ps lifetime inside the porous material of 32.3 +/- 1.2 ns, demonstrating that the ortho-Ps escape rate into vacuum can significantly modify the apparent lifetime of ortho-Ps inside a mesoporous material. Our measurements yield a Ps diffusion coefficient D = 0.07 +/- 0.01 cm(2) s(-1), which is consistent with a tunneling limited diffusion process.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Antihydrogen from positronium impact with cold antiprotons: a Monte Carlo simulation
    Cassidy, DB
    Merrison, JP
    Charlton, M
    Mitroy, J
    Ryzhikh, G
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1999, 32 (08) : 1923 - 1932
  • [32] Water Vapor Emission From Rigid Mesoporous Materials during the Constant Drying Rate Period
    Diaz Goncalves, T.
    Brito, V.
    Pel, L.
    [J]. DRYING TECHNOLOGY, 2012, 30 (05) : 462 - 474
  • [33] Positronium chemistry in porous materials
    Kobayashi, Y.
    Ito, K.
    Oka, T.
    Hirata, K.
    [J]. RADIATION PHYSICS AND CHEMISTRY, 2007, 76 (02) : 224 - 230
  • [34] Spontaneous emission of positronium negative ions from polycrystalline tungsten surfaces
    Nagashima, Yasuyuki
    Hakodate, Toshihide
    Sakai, Takahiko
    [J]. APPLIED SURFACE SCIENCE, 2008, 255 (01) : 217 - 219
  • [35] Editorial: From Mesoporous Supports to Mesoporous Catalysts: Introducing Functionality to Mesoporous Materials
    Luque, Rafael
    Garcia Martinez, Javier
    [J]. CHEMCATCHEM, 2013, 5 (04) : 827 - 829
  • [36] Monoenergetic Positronium Emission from Metal-Organic Framework Crystals
    Jones, A. C. L.
    Goldman, H. J.
    Zhai, Q.
    Feng, P.
    Tom, H. W. K.
    Mills, A. P., Jr.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (15)
  • [37] Spontaneous Emission of Positronium Negative Ions from Tungsten (100) Surface
    Nagashima, Yasuyuki
    Hakodate, Toshihide
    Miyamoto, Ayaka
    Michishio, Koji
    [J]. POSITRON AND POSITRONIUM CHEMISTRY, 2009, 607 : 161 - 165
  • [38] Delayed neutron emission from uranium
    Booth, ET
    Dunning, JR
    Slack, FG
    [J]. PHYSICAL REVIEW, 1939, 55 (09): : 0876 - 0876
  • [39] DELAYED EMISSION FROM PHOTOMULTIPLIER DYNODES
    PERTSEV, AN
    SOSHIN, LD
    [J]. INSTRUMENTS AND EXPERIMENTAL TECHNIQUES-USSR, 1967, (03): : 622 - +
  • [40] Persistent Dimer Emission in Thermally Activated Delayed Fluorescence Materials
    Etherington, Marc K.
    Kukhta, Nadzeya A.
    Higginbotham, Heather F.
    Danos, Andrew
    Bismillah, Aisha N.
    Graves, David R.
    McGonigal, Paul R.
    Haase, Nils
    Morherr, Antonia
    Batsanov, Andrei S.
    Pflumm, Christof
    Bhalla, Vandana
    Bryce, Martin R.
    Monkman, Andrew P.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (17): : 11109 - 11117