Mittag-Leffler stability analysis of a class of homogeneous fractional systems

被引:1
|
作者
Fajraoui, Tarek [1 ]
Ghanmi, Boulbaba [1 ]
Mabrouk, Fehmi [1 ]
Omri, Faouzi [1 ]
机构
[1] Univ Gafsa, Fac Sci Gafsa, Dept Math, Univ Campus Sidi Ahmed Zarroug, Gafsa 2112, Tunisia
关键词
homogeneous fractional systems; Lyapunov homogeneous function; MittagLeffler stability; UNIFORM STABILITY; APPROXIMATIONS;
D O I
10.24425/acs.2021.137424
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we start by the research of the existence of Lyapunov homogeneous function for a class of homogeneous fractional Systems, then we shall prove that local and global behaviors are the same. The uniform Mittag-Leffler stability of homogeneous fractional time-varying systems is studied. A numerical example is given to illustrate the efficiency of the obtained results.
引用
收藏
页码:401 / 415
页数:15
相关论文
共 50 条
  • [11] ON THE MITTAG-LEFFLER STABILITY OF Q-FRACTIONAL NONLINEAR DYNAMICAL SYSTEMS
    Jarad, Fahd
    Abdeljawad, Thabet
    Gundogdu, Emrah
    Baleanu, Dumitru
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2011, 12 (04): : 309 - 314
  • [12] Solvability and stability of a class of fractional Langevin differential equations with the Mittag-Leffler function
    Baghani, Hamid
    Salem, Ahmed
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [13] ON FRACTIONAL MITTAG-LEFFLER OPERATORS
    Ansari, Alireza
    Darani, Mohammadreza Ahmadi
    Moradi, Mohammad
    REPORTS ON MATHEMATICAL PHYSICS, 2012, 70 (01) : 119 - 131
  • [14] Mittag-Leffler stability for a fractional viscoelastic telegraph problem
    Tatar, Nasser-eddine
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (18) : 14184 - 14205
  • [15] Mittag-Leffler stability of numerical solutions to linear homogeneous time fractional parabolic equations
    Dong, Wen
    Wang, Dongling
    NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (03) : 946 - 956
  • [16] ADAPTIVE MITTAG-LEFFLER STABILIZATION OF A CLASS OF FRACTIONAL ORDER UNCERTAIN NONLINEAR SYSTEMS
    Wang, Qiao
    Zhang, Jianliang
    Ding, Dongsheng
    Qi, Donglian
    ASIAN JOURNAL OF CONTROL, 2016, 18 (06) : 2343 - 2351
  • [17] Generalized Mittag-Leffler stability of nonlinear fractional regularized Prabhakar differential systems
    Eshaghi, Shiva
    Ansari, Alireza
    Ghaziani, Reza Khoshsiar
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02): : 665 - 678
  • [18] Mittag-Leffler stability of nabla discrete fractional-order dynamic systems
    Wei, Yingdong
    Wei, Yiheng
    Chen, Yuquan
    Wang, Yong
    NONLINEAR DYNAMICS, 2020, 101 (01) : 407 - 417
  • [19] Mittag-Leffler stability and bifurcation of a nonlinear fractional model with relapse
    Lahrouz, Aadil
    Hajjami, Riane
    El Jarroudi, Mustapha
    Settati, Adel
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 386 (386)
  • [20] Generalized Mittag-Leffler Input Stability of the Fractional Differential Equations
    Sene, Ndolane
    Srivastava, Gautam
    SYMMETRY-BASEL, 2019, 11 (05):