Morphology-controlled synthesis of MnO2 grown on carbon fiber paper for high-rate supercapacitor electrode

被引:3
|
作者
Luo, Gaodan [1 ]
Diao, Guiqiang [2 ]
He, Qingqing [1 ]
Han, Shengbo [1 ]
Dang, Dai [1 ]
Su, Xiaohui [1 ]
机构
[1] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou 510006, Guangdong, Peoples R China
[2] Huizhou Univ, Sch Chem & Mat Engn, Huizhou 516007, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-PERFORMANCE; ELECTROCHEMICAL PERFORMANCES; HYDROTHERMAL SYNTHESIS; NANOFLAKES; GRAPHENE; DIOXIDE;
D O I
10.1007/s10854-022-08684-x
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nanostructured MnO2 with different morphologies based on carbon fiber paper (CFP) had been successfully synthesized via a hydrothermal process. The emphasis of this report focuses on the effect of the Co doping content on the morphologies and electrochemical properties of as-obtained MnO2 electrodes, thereby obtaining the optimal electrode material. Such optimal hierarchical porous nanoflowers entwined with nanowires architecture (Co-MnO2/CFP-1) was obtained by a certain Co content, which displayed an excellent capacitive performance. The Co-MnO2/CFP-1 electrode achieved a relatively high specific capacitance of 161 F g(-1) at 1 A g(-1), and 57% of the capacitance retention for Co-MnO2/CFP-1 when the current density ranging from 1 to 8 A g(-1), which was 27 times than MnO2 without Co doping (MnO2/CFP), proving its excellent rate capability. The Co-MnO2/CFP-1 electrode exhibited a prominent cycle stability of 98% in 10,000 cycles at 4 A g(-1). This significant improvement of capacitive performance benefits result from a well-developed interconnected hierarchical structure and provides more electrochemical active site, facilitating the penetration and diffusion of electrolyte. This study provides a general guidance to develop different morphologies of electrode materials for supercapacitor device.
引用
收藏
页码:18284 / 18293
页数:10
相关论文
共 50 条
  • [21] MnO2/CoO electrode for supercapacitor: Synthesis and electrochemical performance
    Sebastian, Ann Sandra
    Sobha, A.
    Sumangala, R.
    MATERIALS TODAY-PROCEEDINGS, 2022, 55 : 52 - 55
  • [22] Morphology-controlled MnO2 modified silicon diatoms for high-performance asymmetric supercapacitors
    Le, Qiu Jian
    Wang, Tian
    Tran, Diana N. H.
    Dong, Fan
    Zhang, Yu Xin
    Losic, Dusan
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (22) : 10856 - 10865
  • [23] Self-grown MnO2 nanosheets on carbon fiber paper as high-performance supercapacitors electrodes
    Dang, Wenhui
    Dong, Chengjun
    Zhang, Zhifang
    Chen, Gang
    Wang, Yude
    Guan, Hongtao
    ELECTROCHIMICA ACTA, 2016, 217 : 16 - 23
  • [24] MnO2 nanosheets grown on the ZnO-nanorod-modified carbon fibers for supercapacitor electrode materials
    Zhao, Yong
    Jiang, Peng
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2014, 444 : 232 - 239
  • [25] Facile synthesis of MnO2 nanorods grown on porous carbon for supercapacitor with enhanced electrochemical performance
    Lin, Zhen
    Xiang, Xiaotong
    Chen, Kai
    Peng, Shuijiao
    Jiang, Xiancai
    Hou, Linxi
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 540 : 466 - 475
  • [26] Controlled synthesis of MnO2/CNT nanocomposites for supercapacitor applications
    Tan, D. Z. W.
    Cheng, H.
    Nguyen, S. T.
    Duong, H. M.
    MATERIALS TECHNOLOGY, 2014, 29 (A2) : A107 - A113
  • [27] Controlled synthesis of MnO2/CNT nanocomposites for supercapacitor applications
    Duong, H.M. (mpedhm@nus.edu.sg), 1600, Maney Publishing (09):
  • [28] MnO2/Porous Carbon Nanotube/MnO2 Nanocomposites for High-Performance Supercapacitor
    Wang, Jiahao
    Guo, Xihong
    Cui, Rongli
    Huang, Huan
    Liu, Bing
    Li, Ying
    Wang, Dan
    Zhao, Dangui
    Dong, Jinquan
    Li, Shucun
    Sun, Baoyun
    ACS APPLIED NANO MATERIALS, 2020, 3 (11) : 11152 - 11159
  • [29] Synthesis of MnO2/graphene/carbon nanotube nanostructured ternary composite for supercapacitor electrodes with high rate capability
    Liu, Yongchuan
    He, Dawei
    Duan, Jiahua
    Wang, Yongsheng
    Li, Shulei
    MATERIALS CHEMISTRY AND PHYSICS, 2014, 147 (1-2) : 141 - 146
  • [30] Facile synthesis and characterization of MnO2 nanomaterials as supercapacitor electrode materials
    Yucheng Zhao
    Jacob Misch
    Chang-An Wang
    Journal of Materials Science: Materials in Electronics, 2016, 27 : 5533 - 5542