The probabilistic zeta function of finite simple groups

被引:13
|
作者
Damian, Erika [1 ]
Lucchini, Andrea [1 ]
机构
[1] Univ Brescia, Dipartmento Matemat, I-25133 Brescia, Italy
关键词
probabilistic zeta function; finite simple groups;
D O I
10.1016/j.jalgebra.2007.02.055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group; there exists a uniquely determined Dirichlet polynomial P-G(s) such that if t is an element of K then PG W gives the probability of generating G with t randomly chosen elements. We show that it may be recognized from the knowledge of PG (s) whether G/ Frat G is a simple group. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:957 / 971
页数:15
相关论文
共 50 条
  • [21] Probabilistic generation of finite simple groups, II
    Breuer, Thomas
    Guralnick, Robert M.
    Kantor, William M.
    JOURNAL OF ALGEBRA, 2008, 320 (02) : 443 - 494
  • [22] The Probabilistic Zeta Function
    Benesh, Bret
    COMPUTATIONAL GROUP THEORY AND THE THEORY OF GROUPS, II, 2010, 511 : 1 - 9
  • [23] Profinite groups with nonabelian crowns of bounded rank and their probabilistic zeta function
    Andrea Lucchini
    Israel Journal of Mathematics, 2011, 181 : 53 - 64
  • [24] Profinite groups in which the probabilistic zeta function has no negative coefficients
    Detomi, Eloisa
    Lucchini, Andrea
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2021, 31 (02) : 225 - 239
  • [25] Non-prosoluble profinite groups with a rational probabilistic zeta function
    Detomi, Eloisa
    Lucchini, Andrea
    JOURNAL OF GROUP THEORY, 2007, 10 (04) : 453 - 466
  • [26] Profinite groups with nonabelian crowns of bounded rank and their probabilistic zeta function
    Lucchini, Andrea
    ISRAEL JOURNAL OF MATHEMATICS, 2011, 181 (01) : 53 - 64
  • [27] THE BURNSIDE RING FOR FINITE NILPOTENT GROUPS AND ITS ZETA FUNCTION
    Villa-Hernandez, David
    Lopez-Andrade, C. A.
    Manuel Ramirez-Contreras, Juan
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2018, 40 (03): : 351 - 358
  • [28] On the probabilistic ζ-function of pro(finite-soluble) groups
    Weigel, T
    FORUM MATHEMATICUM, 2005, 17 (04) : 669 - 698
  • [29] The Ihara expression for the generalized weighted zeta function of a finite simple graph
    Ide, Yusuke
    Ishikawa, Ayaka
    Morita, Hideaki
    Sato, Iwao
    Segwa, Etsuo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 627 (627) : 227 - 241
  • [30] A probabilistic generalization of the Riemann zeta function
    Boston, N
    ANALYTIC NUMBER THEORY, VOL 1: PROCEEDINGS OF A CONFERENCE IN HONOR OF HEINI HALBERSTAM, 1996, 138 : 155 - 162