Holistically Associated Transductive Zero-Shot Learning

被引:5
|
作者
Xu, Yangyang [1 ]
Xu, Xuemiao [2 ,3 ]
Han, Guoqiang [1 ]
He, Shengfeng [1 ]
机构
[1] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[2] South China Univ Technol, Sch Comp Sci & Engn, Minist Educ, Key Lab Big Data & Intelligent Robot & Guangdong, Guangzhou 510006, Peoples R China
[3] South China Univ Technol, State Key Lab Subtrop Bldg Sci, Prov Key Lab Computat Intelligence & Cyberspace I, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Visualization; Semantics; Artificial neural networks; Predictive models; Training; Pairwise error probability; Loss measurement; Affinity matrix; class association; instance association; zero-shot learning (ZSL); FRAMEWORK;
D O I
10.1109/TCDS.2021.3049274
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the explosive growth of visual media categories, zero-shot learning (ZSL) aims to transfer the knowledge obtained from the seen classes to the unseen classes for recognizing novel instances. However, there is a domain gap between the seen and the unseen classes, and simply matching the unseen instances using nearest neighbor searching in the embedding space cannot bridge this gap effectively. In this article, we propose a holistically associated model to overcome this obstacle. In particular, the proposed model is designed to combat two fundamental problems of ZSL: 1) the representation learning and 2) label assignment of the unseen classes. The first problem is addressed by proposing an affinity propagation network, which considers holistic pairwise connections of all classes for producing exemplar features of the unseen samples. We cope with the second issue by proposing a progressive clustering module. It iteratively refines unseen clusters so that holistic unseen instance features can be used for a reliable classwise label assignment. Thanks to the precise exemplar features and classwise label assignment, our model eliminates the domain gap effectively. We extensively evaluate the proposed model on five human action and image data sets, i.e., Olympics Sports, HMDB51, UCF101, Animals with Attributes 2, and SUN. The experimental results show that the proposed model outperforms state-of-the-art methods on these substantially different data sets.
引用
收藏
页码:437 / 447
页数:11
相关论文
共 50 条
  • [31] Transductive Zero-Shot Hashing for Multilabel Image Retrieval
    Zou, Qin
    Cao, Ling
    Zhang, Zheng
    Chen, Long
    Wang, Song
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (04) : 1673 - 1687
  • [32] Zero-VAE-GAN: Generating Unseen Features for Generalized and Transductive Zero-Shot Learning
    Gao, Rui
    Hou, Xingsong
    Qin, Jie
    Chen, Jiaxin
    Liu, Li
    Zhu, Fan
    Zhang, Zhao
    Shao, Ling
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 3665 - 3680
  • [33] Learning cross-domain semantic-visual relationships for transductive zero-shot learning
    Lv, Fengmao
    Zhang, Jianyang
    Yang, Guowu
    Feng, Lei
    Yu, Yufeng
    Duan, Lixin
    PATTERN RECOGNITION, 2023, 141
  • [34] Anchor-based discriminative dual distribution calibration for transductive zero-shot learning
    Zhang, Yi
    Huang, Sheng
    Yang, Wanli
    Tang, Wenhao
    Zhang, Xiaohong
    Yang, Dan
    IMAGE AND VISION COMPUTING, 2023, 137
  • [35] GT-GAN: A General Transductive Zero-Shot Learning Method Based on GAN
    Dong, Junhao
    Xiao, Bo
    Ding, Bo
    Wang, Haoyu
    IEEE ACCESS, 2020, 8 : 147173 - 147184
  • [36] Ordinal Zero-Shot Learning
    Huo, Zengwei
    Geng, Xin
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1916 - 1922
  • [37] Zero-Shot Kernel Learning
    Zhang, Hongguang
    Koniusz, Piotr
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 7670 - 7679
  • [38] Zero-shot causal learning
    Nilforoshan, Hamed
    Moor, Michael
    Roohani, Yusuf
    Chen, Yining
    Surina, Anja
    Yasunaga, Michihiro
    Oblak, Sara
    Leskovec, Jure
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [39] Zero-shot Metric Learning
    Xu, Xinyi
    Cao, Huanhuan
    Yang, Yanhua
    Yang, Erkun
    Deng, Cheng
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3996 - 4002
  • [40] Active Zero-Shot Learning
    Xie, Sihong
    Wang, Shaoxiong
    Yu, Philip S.
    CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2016, : 1889 - 1892