GNSS global real-time augmentation positioning: Real-time precise satellite clock estimation, prototype system construction and performance analysis

被引:23
|
作者
Chen, Liang [1 ,2 ]
Zhao, Qile [1 ,3 ]
Hu, Zhigang [1 ,3 ]
Jiang, Xinyuan [4 ]
Geng, Changjiang [2 ]
Ge, Maorong [4 ]
Shi, Chuang [5 ,6 ]
机构
[1] Wuhan Univ, GNSS Res Ctr, 129 Luoyu Rd, Wuhan 430079, Hubei, Peoples R China
[2] China Acad Aerosp Elect Technol, GNSS Engn Ctr, 1 Fengying East Rd, Beijing 100094, Peoples R China
[3] Natl Engn Ctr Satellite Positioning Syst, 129 Luoyu Rd, Wuhan 430079, Hubei, Peoples R China
[4] Germany Res Ctr Geosci GFZ, D-14473 Potsdam, Germany
[5] Beihang Univ, Sch Elect & Informat Engn, 37 Xueyuan Rd, Beijing 100191, Peoples R China
[6] Collaborat Innovat Ctr Geospatial Technol, 37 Xueyuan Rd, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
GPS/BeiDou/Galileo; Real-time augmentation positioning system; Real-time precise clock estimation; Precise orbit estimation; PPP; Prototype system construction; ORBIT DETERMINATION; IGS; ACCURACY; GPS; NETWORKS; QUALITY; GLONASS; GALILEO; BEIDOU;
D O I
10.1016/j.asr.2017.08.037
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Lots of ambiguities in un-differenced (UD) model lead to lower calculation efficiency, which isn't appropriate for the high-frequency real-time GNSS clock estimation, like 1 Hz. Mixed differenced model fusing UD pseudo-range and epoch-differenced (ED) phase observations has been introduced into real-time clock estimation. In this contribution, we extend the mixed differenced model for realizing multi-GNSS real-time clock high-frequency updating and a rigorous comparison and analysis on same conditions are performed to achieve the best real-time clock estimation performance taking the efficiency, accuracy, consistency and reliability into consideration. Based on the multi-GNSS real-time data streams provided by multi-GNSS Experiment (MGEX) and Wuhan University, GPS + BeiDou + Galileo global real-time augmentation positioning prototype system is designed and constructed, including real-time precise orbit determination, real-time precise clock estimation, real-time Precise Point Positioning (RT-PPP) and real-time Standard Point Positioning (RT-SPP). The statistical analysis of the 6 h-predicted real-time orbits shows that the root mean square (RMS) in radial direction is about 1-5 cm for GPS, Beidou MEO and Galileo satellites and about 10 cm for Beidou GEO and IGSO satellites. Using the mixed differenced estimation model, the prototype system can realize high-efficient real-time satellite absolute clock estimation with no constant clock-bias and can be used for high-frequency augmentation message updating (such as 1 Hz). The real-time augmentation message signal-in-space ranging error (SISRE), a comprehensive accuracy of orbit and clock and effecting the users' actual positioning performance, is introduced to evaluate and analyze the performance of GPS + BeiDou + Galileo global real-time augmentation positioning system. The statistical analysis of real-time augmentation message SISRE is about 4-7 cm for GPS, while 10 cm for Beidou IGSO/MEO, Galileo and about 30 cm for BeiDou GEO satellites. The real-time positioning results prove that the GPS + BeiDou + Galileo RT-PPP comparing to GPS-only can effectively accelerate convergence time by about 60%, improve the positioning accuracy by about 30% and obtain averaged RMS 4 cm in horizontal and 6 cm in vertical; additionally RT-SPP accuracy in the prototype system can realize positioning accuracy with about averaged RMS 1 m in horizontal and 1.5-2 m in vertical, which are improved by 60% and 70% to SPP based on broadcast ephemeris, respectively. (C) 2017 Published by Elsevier Ltd on behalf of COSPAR.
引用
收藏
页码:367 / 384
页数:18
相关论文
共 50 条
  • [41] Method for evaluating real-time GNSS satellite clock offset products
    Yibin Yao
    Yadong He
    Wenting Yi
    Weiwei Song
    Cheng Cao
    Ming Chen
    GPS Solutions, 2017, 21 : 1417 - 1425
  • [42] Method for evaluating real-time GNSS satellite clock offset products
    Yao, Yibin
    He, Yadong
    Yi, Wenting
    Song, Weiwei
    Cao, Cheng
    Chen, Ming
    GPS SOLUTIONS, 2017, 21 (04) : 1417 - 1425
  • [43] Real-time clock prediction of multi-GNSS satellites and its application in precise point positioning
    Peng, Yaquan
    Lou, Yidong
    Gong, Xiaopeng
    Wang, Yintong
    Dai, Xiaolei
    ADVANCES IN SPACE RESEARCH, 2019, 64 (07) : 1445 - 1454
  • [44] A fast GNSS satellite selection algorithm for continuous real-time positioning
    Quanzhou Yu
    Yongqing Wang
    Yuyao Shen
    GPS Solutions, 2022, 26
  • [45] A fast GNSS satellite selection algorithm for continuous real-time positioning
    Yu, Quanzhou
    Wang, Yongqing
    Shen, Yuyao
    GPS SOLUTIONS, 2022, 26 (03)
  • [46] Characterizing the fault performance of real-time precise satellite orbit and clock correction products
    Huang, Weiquan
    Li, Menghao
    Li, Liang
    Wang, Renlong
    Wang, Liuqi
    Wang, Ningbo
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (02)
  • [48] Real-Time GPS Satellite Clock Estimation Based on OpenMP
    Gao, Kang
    Zhang, Shoujian
    Li, Jiancheng
    Cao, Xinyun
    Kuang, Kaifa
    CHINA SATELLITE NAVIGATION CONFERENCE (CSNC) 2017 PROCEEDINGS, VOL III, 2017, 439 : 217 - 226
  • [49] A flexible strategy for handling the datum and initial bias in real-time GNSS satellite clock estimation
    Lewen Zhao
    Jan Dousa
    Shirong Ye
    Pavel Vaclavovic
    Journal of Geodesy, 2020, 94
  • [50] A new approach to real-time precise point-positioning timing with International GNSS Service real-time service products
    Ge, Yulong
    Qin, WeiJin
    Su, Ke
    Yang, Xuhai
    Ouyang, Mingjun
    Zhou, Feng
    Zhao, Xingwang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2019, 30 (12)