Overexpression of a histone H3K4 demethylase, JMJ15, accelerates flowering time in Arabidopsis

被引:70
|
作者
Yang, Hongchun [1 ]
Mo, Huixian [1 ]
Fan, Di [1 ]
Cao, Ying [1 ]
Cui, Sujuan [1 ]
Ma, Ligeng [1 ,2 ]
机构
[1] Hebei Normal Univ, Hebei Key Lab Mol Cell Biol, Coll Biol Sci, Shijiazhuang 050016, Hebei, Peoples R China
[2] Capital Normal Univ, Coll Life Sci, Beijing 100048, Peoples R China
关键词
JMJ15; H3K4; demethylase; Histone modification; Flowering time; FLC; DOMAIN-CONTAINING PROTEINS; LOCUS-C; LYSINE; 4; NATURAL VARIATION; DNA METHYLATION; JMJD2; FAMILY; CHROMATIN; VERNALIZATION; THALIANA; REPRESSION;
D O I
10.1007/s00299-012-1249-5
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The methylation of histone 3 lysine 4 (H3K4) is essential for gene activation. Flowering Locus C (FLC), an important flowering repressor, quantitatively regulates flowering time in Arabidopsis and its expression level is coincident with H3K4 trimethylation (H3K4me3) dynamics. The methylation state of FLC chromatin is determined by the balance between methylation and demethylation, which is mediated by histone methyltransferases and demethylases, respectively. However, little is known about the role of histone demethylase(s) in FLC regulation. Here, we characterized the biochemical activity and biological function of a novel JmjC domain-containing H3K4 demethylase, JMJ15, in Arabidopsis. JMJ15, which is a member of the H3K4 demethylase JARID1 family, displayed H3K4me3 demethylase activity both in vitro and in vivo. The mutation of JMJ15 did not produce an obvious phenotype; however, overexpression JMJ15 resulted in an obvious early flowering phenotype, which was associated with the repression of FLC level and reduction in H3K4me3 at the FLC locus, resulting in increased FT expression. Our results suggest that JMJ15 is a novel H3K4 demethylase, involved in the control of flowering time by demethylating H3K4me3 at FLC chromatin when it was overexpressed in Arabidopsis. Key message Overexpression of a histone H3K4 demethylase, JMJ15, represses FLC expression by decreasing its chromatin H3K4me3 level, thereby controlling flowering time in Arabidopsis.
引用
收藏
页码:1297 / 1308
页数:12
相关论文
共 50 条
  • [31] Histone H3 lysine 4 (H3K4) methylation in development and differentiation
    Eissenberg, Joel C.
    Shilatifard, Ali
    DEVELOPMENTAL BIOLOGY, 2010, 339 (02) : 240 - 249
  • [32] KDM5A, A HISTONE H3K4 DEMETHYLASE, REGULATES SPERMATOGENESIS VIA ITS ACTION ON GERM CELL
    Nishio, Hidenori
    Mizuno, Kentaro
    Yoshinobu, Moritoki
    Kamisawa, Hideyuki
    Nakane, Akihiro
    Kurokawa, Satoshi
    Maruyama, Tetsuji
    Hayashi, Yutaro
    Yasui, Takahiro
    JOURNAL OF UROLOGY, 2016, 195 (04): : E848 - E848
  • [33] The retinoblastoma binding protein RBP2 is an H3K4 demethylase
    Klose, Robert J.
    Yan, Qin
    Tothova, Zuzana
    Yamane, Kenichi
    Erdjument-Bromage, Hediye
    Tempst, Paul
    Gilliland, D. Gary
    Zhang, Yi
    Kaelin, William G., Jr.
    CELL, 2007, 128 (05) : 889 - 900
  • [34] Balancing of Histone H3K4 Methylation States by the Kdm5c/SMCX Histone Demethylase Modulates Promoter and Enhancer Function
    Outchkourov, Nikolay S.
    Muino, Jose M.
    Kaufmann, Kerstin
    van IJcken, Wilfred F. J.
    Koerkamp, Marian J. Groot
    van Leenen, Dik
    de Graaf, Petra
    Holstege, Frank C. P.
    Grosveld, Frank G.
    Timmers, H. T. Marc
    CELL REPORTS, 2013, 3 (04): : 1071 - 1079
  • [35] Ectopic Overexpression of Histone H3K4 Methyltransferase CsSDG36 from Tea Plant Decreases Hyperosmotic Stress Tolerance in Arabidopsis thaliana
    Chen, Qinghua
    Guo, Linghui
    Yuan, Yanwen
    Hu, Shuangling
    Guo, Fei
    Zhao, Hua
    Yun, Zhenyu
    Wang, Yu
    Wang, Mingle
    Ni, Dejiang
    Zhao, Lin
    Wang, Pu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (10)
  • [36] Histone demethylase JMJD2B coordinates H3K4/H3K9 methylation and promotes hormonally responsive breast carcinogenesis
    Shi, Lei
    Sun, Luyang
    Li, Qian
    Liang, Jing
    Yu, Wenhua
    Yi, Xia
    Yang, Xiaohan
    Li, Yanyan
    Han, Xiao
    Zhang, Yu
    Xuan, Chenghao
    Yao, Zhi
    Shang, Yongfeng
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (18) : 7541 - 7546
  • [37] Prognostic and biological significance of overexpression of SETD1A histone H3K4 methyltransferase in pancreatic cancer
    Akiyama, Yoshimitsu
    Shimada, Shu
    Tanabe, Minoru
    Tanaka, Shinji
    CANCER SCIENCE, 2023, 114 : 1930 - 1930
  • [38] Histone H3K4 demethylation is negatively regulated by histone H3 acetylation in Saccharomyces cerevisiae
    Maltby, Vicki E.
    Martin, Benjamin J. E.
    Brind'Amour, Julie
    Chruscicki, Adam T.
    McBurney, Kristina L.
    Schulze, Julia M.
    Johnson, Ian J.
    Hills, Mark
    Hentrich, Thomas
    Kobor, Michael S.
    Lorincz, Matthew C.
    Howe, LeAnn J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (45) : 18505 - 18510
  • [39] Transcription in the Absence of Histone H3.2 and H3K4 Methylation
    Hoedl, Martina
    Basler, Konrad
    CURRENT BIOLOGY, 2012, 22 (23) : 2253 - 2257
  • [40] Histone Crosstalk: H2Bub and H3K4 Methylation
    Soares, Luis M.
    Buratowski, Stephen
    MOLECULAR CELL, 2013, 49 (06) : 1019 - 1020