Delayed feedback selective pattern formation in reaction-diffusion systems

被引:0
|
作者
Kashima, Kenji [1 ]
Umezu, Yusuke [2 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Sakyo Ku, Kyoto, Japan
[2] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama, Toyonaka, Osaka, Japan
关键词
TURBULENCE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
the natural world, there exist many autonomous spatially non-uniform patterns. From an engineering point of view, controlling these phenomena is potentially useful to many practical applications. In view of this, the authors formulated and solved a novel feedback control problem of such autonomous spatial patterns based on a specific reaction-diffusion system [5]. In this paper, toward development of an implementable control strategy, we derive a delay-dependent criterion under which the control law obtained in [5] suitably generates the desired spatial patterns. The effectiveness of the theoretical result is verified by numerical simulations.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Pattern formation in a two-component reaction-diffusion system with delayed processes on a network
    Petit, Julien
    Asllani, Malbor
    Fanelli, Duccio
    Lauwens, Ben
    Carletti, Timoteo
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 462 : 230 - 249
  • [42] On pattern formation in reaction-diffusion systems containing self- and cross-diffusion
    Aymard, Benjamin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 105
  • [43] Synchronization for Reaction-Diffusion Switched Delayed Feedback Epidemic Systems via Impulsive Control
    Rao, Ruofeng
    Zhu, Quanxin
    MATHEMATICS, 2024, 12 (03)
  • [44] The effect of delayed feedback on the dynamics of an autocatalysis reaction-diffusion system
    Wei, Xin
    Wei, Junjie
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2018, 23 (05): : 749 - 770
  • [45] BIFURCATION PATTERN IN REACTION-DIFFUSION DISSIPATIVE SYSTEMS
    JANSSEN, R
    HLAVACEK, V
    VANROMPAY, P
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1983, 38 (04): : 487 - 492
  • [46] PATTERN-FORMATION IN NONGRADIENT REACTION-DIFFUSION SYSTEMS - THE EFFECTS OF FRONT BIFURCATIONS
    HAGBERG, A
    MERON, E
    NONLINEARITY, 1994, 7 (03) : 805 - 835
  • [47] Spatiotemporal pattern formation in fractional reaction-diffusion systems with indices of different order
    Gafiychuk, V. V.
    Datsko, B. Y.
    PHYSICAL REVIEW E, 2008, 77 (06):
  • [48] Noise-Induced Spatial Pattern Formation in Stochastic Reaction-Diffusion Systems
    Hori, Yutaka
    Hara, Shinji
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 1053 - 1058
  • [49] Direct discontinuous Galerkin method for nonlinear reaction-diffusion systems in pattern formation
    Zhang, Rongpei
    Yu, Xijun
    Zhu, Jiang
    Loula, Abimael F. D.
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (5-6) : 1612 - 1621
  • [50] PATTERN FORMATION IN TWO-COMPONENT REACTION-DIFFUSION SYSTEMS IN FLUCTUATE ENVIRONMENT
    Kurushina, S. E.
    Zhelnov, Yu. V.
    Zavershinskii, I. P.
    Maximov, V. V.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2010, (01): : 143 - 153