Flexible Ion-Conducting Composite Membranes for Lithium Batteries

被引:108
|
作者
Aetukuri, Nagaphani B. [1 ]
Kitajima, Shintaro [2 ]
Jung, Edward [1 ]
Thompson, Leslie E. [1 ]
Virwani, Kumar [1 ]
Reich, Maria-Louisa [3 ]
Kunze, Miriam [3 ]
Schneider, Meike [3 ]
Schmidbauer, Wolfgang [3 ]
Wilcke, Winfried W. [1 ]
Bethune, Donald S. [1 ]
Scott, J. Campbell [1 ]
Miller, Robert D. [1 ]
Kim, Ho-Cheol [1 ]
机构
[1] IBM Res, San Jose, CA 95120 USA
[2] Asahi Kasei Corp, Fuji, Shizuoka 4168501, Japan
[3] SCHOTT AG, D-55122 Mainz, Germany
关键词
lithium batteries; ion-conducting membranes; composite membranes; solid-state batteries; dendrite resistance; POLYMER ELECTROLYTES; DEPOSITION; GROWTH;
D O I
10.1002/aenm.201500265
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The use of metallic lithium anodes enables higher energy density and higher specific capacity Li-based batteries. However, it is essential to suppress lithium dendrite growth during electrodeposition. Li-ion-conducting ceramics (LICC) can mechanically suppress dendritic growth but are too fragile and also have low Li-ion conductivity. Here, a simple, versatile, and scalable procedure for fabricating flexible Li-ion-conducting composite membranes composed of a single layer of LICC particles firmly embedded in a polymer matrix with their top and bottom surfaces exposed to allow for ionic transport is described. The membranes are thin (<100 m) and possess high Li-ion conductance at thicknesses where LICC disks are mechanically unstable. It is demonstrated that these membranes suppress Li dendrite growth even when the shear modulus of the matrix is lower than that of lithium. It is anticipated that these membranes enable the use of metallic lithium anodes in conventional and solid-state Li-ion batteries as well as in future LiS and LiO2 batteries.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Membranes in Lithium Ion Batteries
    Yang, Min
    Hou, Junbo
    MEMBRANES, 2012, 2 (03) : 367 - 383
  • [42] A flexible, ion-conducting solid electrolyte with vertically bicontinuous transfer channels toward high performance all-solid-state lithium batteries
    Liu, Chong
    Wang, Junxiao
    Kou, Weijie
    Yang, Zhihao
    Zhai, Pengfei
    Liu, Yong
    Wu, Wenjia
    Wang, Jingtao
    CHEMICAL ENGINEERING JOURNAL, 2021, 404
  • [43] Oxygen permeation rates through ion-conducting perovskite membranes
    Xu, SJ
    Thomson, WJ
    CHEMICAL ENGINEERING SCIENCE, 1999, 54 (17) : 3839 - 3850
  • [44] Effect of biaxial stretching on the ion-conducting properties of Nafion membranes
    Karpushkin, Evgeny A.
    Artemov, Mikhail V.
    Sergeyev, Vladimir G.
    MENDELEEV COMMUNICATIONS, 2016, 26 (02) : 117 - 118
  • [45] A Ceramic-PVDF Composite Membrane with Modified Interfaces as an Ion-Conducting Electrolyte for Solid-State Lithium-Ion Batteries Operating at Room Temperature
    Yu, Jing
    Kwok, Stephen C. T.
    Lu, Ziheng
    Effat, Mohammed B.
    Lyu, Yu-Qi
    Yuen, Matthew M. F.
    Ciucci, Francesco
    CHEMELECTROCHEM, 2018, 5 (19): : 2873 - 2881
  • [46] Oxidation of Dry Methane on the Surface of Oxygen Ion-Conducting Membranes
    A.A. Yaremchenko
    A.A. Valente
    V.V. Kharton
    E.V. Tsipis
    J.R. Frade
    E.N. Naumovich
    J. Rocha
    F.M.B. Marques
    Catalysis Letters, 2003, 91 : 169 - 174
  • [47] Oxidation of dry methane on the surface of oxygen ion-conducting membranes
    Yaremchenko, AA
    Valente, AA
    Kharton, VV
    Tsipis, EV
    Frade, JR
    Naumovich, EN
    Rocha, J
    Marques, FMB
    CATALYSIS LETTERS, 2003, 91 (3-4) : 169 - 174
  • [48] Properties of ion-conducting lanthanum lithium titanate based ceramics
    A. A. Shibkova
    A. A. Surin
    Z. S. Martem’yanova
    V. I. Voronin
    A. P. Stepanov
    I. V. Korzun
    L. A. Blaginina
    V. P. Obrosov
    Glass and Ceramics, 2007, 64 : 124 - 128
  • [49] ION-CONDUCTING DIAPHRAGMS FOR ENRICHMENT OF CATHOLITE BY LIGHT LITHIUM ISOTOPES
    PETENEV, OS
    UKRAINSKII KHIMICHESKII ZHURNAL, 1991, 57 (07): : 754 - &
  • [50] Nanocomposite lithium ion conducting membranes
    Croce, F
    Scrosati, B
    ADVANCED MEMBRANE TECHNOLOGY, 2003, 984 : 194 - 207