Polynomial integration lattices

被引:0
|
作者
L'Ecuyer, P [1 ]
机构
[1] Univ Montreal, Dept Informat & Rech Operat, Montreal, PQ H3C 3J7, Canada
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Lattice rules axe quasi-Monte Carlo methods for estimating large-dimensional integrals over the unit hypercube. In this paper, after briefly reviewing key ideas of quasi-Monte Carlo methods, we give an overview of recent results generalize some of them, and provide new results, for lattice rules defined in spaces of polynomials and of formal series with coefficients in the finite ring Z(b). Some of the results axe proved only for the case where b is a prime (so Z(b) is a finite field). We discuss basic properties, implementations, a randomized version, and quality criteria (i.e., measures of uniformity) for selecting the parameters. Two types of polynomial lattice rules are examined: dimensionwise lattices and resolutionwise lattices. These rules turn out to be special cases of digital net constructions, which we reinterpret as yet another type of lattice in a space of formal series. Our development underlines the connections between integration lattices and digital nets.
引用
收藏
页码:73 / 98
页数:26
相关论文
共 50 条
  • [11] A note on polynomial automorphisms of finite lattices
    H. Lakser
    algebra universalis, 1997, 37 : 144 - 145
  • [12] Algebraic lattices via polynomial rings
    Agnaldo José Ferrari
    Antonio Aparecido de Andrade
    Computational and Applied Mathematics, 2019, 38
  • [13] Algebraic lattices via polynomial rings
    Ferrari, Agnaldo Jose
    de Andrade, Antonio Aparecido
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (04):
  • [14] Vector lattices of almost polynomial sequences
    Wickstead, A. W.
    POSITIVITY, 2010, 14 (03) : 407 - 420
  • [15] On order-polynomial completeness of lattices
    M. Ploščica
    M. Haviar
    algebra universalis, 1998, 39 : 217 - 219
  • [16] LOCAL POLYNOMIAL FUNCTIONS ON DISTRIBUTIVE LATTICES
    DORNINGER, D
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1978, 50 (04): : 433 - 437
  • [17] The coordinator polynomial of some cyclotomic lattices
    Patras, Frederic
    Sole, Patrick
    EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (01) : 17 - 25
  • [18] WORD LENGTH OF POLYNOMIAL FUNCTIONS ON LATTICES
    DORNINGER, D
    MONATSHEFTE FUR MATHEMATIK, 1973, 77 (02): : 97 - 104
  • [19] Commuting Polynomial Operations of Distributive Lattices
    Behrisch, Mike
    Couceiro, Miguel
    Kearnes, Keith A.
    Lehtonen, Erkko
    Szendrei, Agnes
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2012, 29 (02): : 245 - 269
  • [20] EFFICIENT POLYNOMIAL ALGORITHMS FOR DISTRIBUTIVE LATTICES
    BORDAT, JP
    DISCRETE APPLIED MATHEMATICS, 1991, 32 (01) : 31 - 50