Segmentation of radiographic images using fuzzy c-means algorithm

被引:5
|
作者
Wang, X [1 ]
Wong, BS [1 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Robot Res Ctr, Singapore 639798, Singapore
关键词
D O I
10.1784/insi.2005.47.10.631
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Radiographic non-destructive testing is often used for detecting welding defects. Due to the degraded quality and the small size of the defects, X-ray films are sometimes difficult to interpret. The interpretation of such images is often affected by a human operator's subjectivity. Digital image processing techniques allow the interpretation to be automated. A key step in the automated interpretation process is the segmentation of indications from the background. In this paper, a segmentation method based on fuzzy c-means algorithm is applied to the radiographic image. In the proposed method, firstly top-hat, bottom-hat filter and adaptive wavelet thresholding are used to improve the quality of the radiographic image. Then, a fuzzy c-means algorithm is applied to segment the radiographic image. The experimental results show that the proposed method gives good performance for radiographic images.
引用
收藏
页码:631 / 633
页数:3
相关论文
共 50 条
  • [41] Image segmentation by generalized hierarchical fuzzy C-means algorithm
    Zheng, Yuhui
    Jeon, Byeungwoo
    Xu, Danhua
    Wu, Q. M. Jonathan
    Zhang, Hui
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 28 (02) : 961 - 973
  • [42] IMAGE SEGMENTATION BY A ROBUST GENERALIZED FUZZY C-MEANS ALGORITHM
    Zhang, Hui
    Wu, Q. M. Jonathan
    Thanh Minh Nguyen
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 4024 - 4028
  • [43] A fast fuzzy c-means algorithm for colour image segmentation
    Liu, Qigang
    Zhou, Li
    Sun, Xiangyang
    International Journal of Information and Communication Technology, 2013, 5 (3-4) : 263 - 271
  • [44] An enhanced fuzzy c-means algorithm for audio segmentation and classification
    Haque, Mohammad A.
    Kim, Jong-Myon
    MULTIMEDIA TOOLS AND APPLICATIONS, 2013, 63 (02) : 485 - 500
  • [45] An Image Segmentation Algorithm Based on Fuzzy C-Means Clustering
    Zhang, Xin-bo
    Jiang, Li
    ICDIP 2009: INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING, PROCEEDINGS, 2009, : 22 - 26
  • [46] Optimal Fuzzy C-Means Algorithm for Brain Image Segmentation
    Hooda, Heena
    Verma, Om Prakash
    Arora, Sonam
    APPLICATIONS OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN ENGINEERING, SIGMA 2018, VOL 1, 2019, 698 : 591 - 602
  • [47] A fuzzy c-means (FCM) based algorithm for intensity inhomogeneity correction and segmentation of MR images
    Chen, WJ
    Giger, ML
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 and 2, 2004, : 1307 - 1310
  • [48] A fast fuzzy c-means algorithm for color image segmentation
    Le Capitaine, Hoel
    Frelicot, Carl
    PROCEEDINGS OF THE 7TH CONFERENCE OF THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY (EUSFLAT-2011) AND LFA-2011, 2011, : 1074 - 1081
  • [49] Parallel hesitant fuzzy C-means algorithm to image segmentation
    Virna V. Vela-Rincón
    Dante Mújica-Vargas
    Jose de Jesus Rubio
    Signal, Image and Video Processing, 2022, 16 : 73 - 81
  • [50] New Shadowed Fuzzy C-Means Algorithm for Image Segmentation
    Chen, Long
    Chen, Shihong
    IEEE ICCSS 2016 - 2016 3RD INTERNATIONAL CONFERENCE ON INFORMATIVE AND CYBERNETICS FOR COMPUTATIONAL SOCIAL SYSTEMS (ICCSS), 2016, : 43 - 46