A numerical study on elliptical particle deposition with an immersed boundary-lattice Boltzmann method

被引:2
|
作者
Wang, Wen-Quan [1 ]
Wang, Jinling [2 ]
Cui, Guanzhe [1 ]
Pei, Junxian [1 ]
Yan, Yan [1 ,2 ]
机构
[1] Sichuan Univ, Coll Water Resource & Hydropower, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Peoples R China
[2] Kunming Univ Sci & Technol, Sch Architecture & Mech, Kunming 650500, Peoples R China
关键词
Elliptical particle deposition; Lattice Boltzmann flux solver; Immersed boundary method; Hydrodynamic characteristics; PARTICULATE SUSPENSIONS; DRUG-DELIVERY; FLOW PATTERNS; SOLID BODIES; FLUX SOLVER; SIMULATION; MOTION; MODEL; NANOPARTICLES; SEDIMENTATION;
D O I
10.1016/j.compfluid.2022.105644
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a numerical study on elliptic particle deposition in a Newtonian fluid at low Reynolds numbers. The effects of inflow condition, Reynolds number, aspect ratio, initial angle, and density ratio on the dynamic characteristics of the particle are investigated. The results show that the absolute deposition velocity of the particle increases with the decrease of Reynolds number for all flow conditions. Although there is a slight difference between the uniform and the Poiseuille flows, the absolute deposition and angular velocities of the particle are enhanced by the shear flow. Moreover, the deposition, horizontal and angular velocities exhibit a periodic fluctuation with the dependent frequency of the inflow conditions and the Reynolds numbers. The relationship between the time-averaged deposition velocity and the aspect ratio presents a closing quadratic curve. The initial angle of the particle only affects the phase difference of motion but not changes the dynamic characteristics of the particle. Furthermore, the time-averaged deposition velocity of the particle is proportional to the density ratio.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] An adaptive immersed boundary-lattice Boltzmann method for simulating a flapping foil in ground effect
    Wu, J.
    Qiu, Y. L.
    Shu, C.
    Zhao, N.
    Wang, X.
    COMPUTERS & FLUIDS, 2015, 106 : 171 - 184
  • [42] A bounce back-immersed boundary-lattice Boltzmann model for curved boundary
    Wang, Zhengdao
    Wei, Yikun
    Qian, Yuehong
    APPLIED MATHEMATICAL MODELLING, 2020, 81 : 428 - 440
  • [43] Simulation of Thermal Flow Problems via a Hybrid Immersed Boundary-Lattice Boltzmann Method
    Wu, J.
    Shu, C.
    Zhao, N.
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [44] An immersed boundary-lattice Boltzmann method for electro-thermo-convection in complex geometries
    Hu, Yang
    Li, Decai
    Niu, Xiaodong
    Shu, Shi
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2019, 140 : 280 - 297
  • [45] Study of Rotation Effect on Nanofluid Natural Convection and Heat Transfer by the Immersed Boundary-Lattice Boltzmann Method
    Lai, Tianwang
    Xu, Jimin
    Liu, Xiangyang
    He, Maogang
    ENERGIES, 2022, 15 (23)
  • [46] Wall-modeled large eddy simulation in the immersed boundary-lattice Boltzmann method
    Wang, Li
    Liu, Zhengliang
    Jin, Bruce Ruishu
    Huang, Qiuxiang
    Young, John
    Tian, Fang-Bao
    PHYSICS OF FLUIDS, 2024, 36 (03)
  • [47] The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems
    Feng, ZG
    Michaelides, EE
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 195 (02) : 602 - 628
  • [48] Discrete Lattice effect of various forcing methods of body force on immersed Boundary-Lattice Boltzmann method
    Son, Sung Wan
    Yoon, Hyun Sik
    Jeong, Hae Kwon
    Ha, ManYeong
    Balachandar, S.
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2013, 27 (02) : 429 - 441
  • [49] Discrete lattice effect of various forcing methods of body force on immersed Boundary-Lattice Boltzmann method
    Sung Wan Son
    Hyun Sik Yoon
    Hae Kwon Jeong
    ManYeong Ha
    S. Balachandar
    Journal of Mechanical Science and Technology, 2013, 27 : 429 - 441
  • [50] An immersed boundary-lattice Boltzmann model for biofilm growth in porous media
    Benioug, M.
    Golfier, F.
    Oltean, C.
    Bues, M. A.
    Bahar, T.
    Cuny, J.
    ADVANCES IN WATER RESOURCES, 2017, 107 : 65 - 82