A numerical study on elliptical particle deposition with an immersed boundary-lattice Boltzmann method

被引:2
|
作者
Wang, Wen-Quan [1 ]
Wang, Jinling [2 ]
Cui, Guanzhe [1 ]
Pei, Junxian [1 ]
Yan, Yan [1 ,2 ]
机构
[1] Sichuan Univ, Coll Water Resource & Hydropower, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Peoples R China
[2] Kunming Univ Sci & Technol, Sch Architecture & Mech, Kunming 650500, Peoples R China
关键词
Elliptical particle deposition; Lattice Boltzmann flux solver; Immersed boundary method; Hydrodynamic characteristics; PARTICULATE SUSPENSIONS; DRUG-DELIVERY; FLOW PATTERNS; SOLID BODIES; FLUX SOLVER; SIMULATION; MOTION; MODEL; NANOPARTICLES; SEDIMENTATION;
D O I
10.1016/j.compfluid.2022.105644
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a numerical study on elliptic particle deposition in a Newtonian fluid at low Reynolds numbers. The effects of inflow condition, Reynolds number, aspect ratio, initial angle, and density ratio on the dynamic characteristics of the particle are investigated. The results show that the absolute deposition velocity of the particle increases with the decrease of Reynolds number for all flow conditions. Although there is a slight difference between the uniform and the Poiseuille flows, the absolute deposition and angular velocities of the particle are enhanced by the shear flow. Moreover, the deposition, horizontal and angular velocities exhibit a periodic fluctuation with the dependent frequency of the inflow conditions and the Reynolds numbers. The relationship between the time-averaged deposition velocity and the aspect ratio presents a closing quadratic curve. The initial angle of the particle only affects the phase difference of motion but not changes the dynamic characteristics of the particle. Furthermore, the time-averaged deposition velocity of the particle is proportional to the density ratio.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Numerical study on the dynamics of primary cilium in pulsatile flows by the immersed boundary-lattice Boltzmann method
    Jingyu Cui
    Yang Liu
    Bingmei M. Fu
    Biomechanics and Modeling in Mechanobiology, 2020, 19 : 21 - 35
  • [2] Numerical study on the dynamics of primary cilium in pulsatile flows by the immersed boundary-lattice Boltzmann method
    Cui, Jingyu
    Liu, Yang
    Fu, Bingmei M.
    BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2020, 19 (01) : 21 - 35
  • [3] Study of flapping filaments using the immersed boundary-lattice Boltzmann method
    Wang, Zhengdao
    Wei, Yi Kun
    Qian, Yuehong
    TEXTILE RESEARCH JOURNAL, 2019, 89 (15) : 3127 - 3136
  • [4] Numerical simulation of fiber conveyance in a confined channel by the immersed boundary-lattice Boltzmann method
    Cui, Jingyu
    Lin, Zhe
    Jin, Yuzhen
    Liu, Yang
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2019, 76 : 422 - 433
  • [5] Simulating particle sedimentation in a flowing fluid using an immersed boundary-lattice Boltzmann method
    Liu, Shenggui
    Tang, Songlei
    Lv, Mindong
    Zhao, Yuechao
    Li, Yingjun
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2020, 34 (01) : 39 - 49
  • [6] Hydrodynamic resolved simulation of a char particle combustion by immersed boundary-lattice Boltzmann method
    Jiang, Maoqiang
    Ma, Kuang
    Li, Jing
    Liu, Zhaohui
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2022, 132
  • [7] An immersed boundary-lattice Boltzmann method for gaseous slip flow
    Xu, Lincheng
    Yu, Xu
    Regenauer-Lieb, Klaus
    PHYSICS OF FLUIDS, 2020, 32 (01)
  • [8] Two-Solid Deposition in Fluid Column using Immersed Boundary-Lattice Boltzmann Method
    Arbie, M. Rizqie
    Fauzi, Umar
    Latief, Fourier D. E.
    Mustopa, Enjang J.
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2021, 7 (03): : 1814 - 1825
  • [9] A direct heating immersed boundary-lattice Boltzmann method for thermal flows
    Bamiro, Oluyinka O.
    Liou, William W.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2014, 24 (01) : 169 - 200
  • [10] NUMERICAL INVESTIGATION OF UNSTEADY FLOWS PAST FLAPPING WINGS WITH IMMERSED BOUNDARY-LATTICE BOLTZMANN METHOD
    Gong, C. L.
    Yuan, Z. J.
    Zhou, Q.
    Chen, G.
    Fang, Z.
    JOURNAL OF MECHANICS, 2018, 34 (02) : 193 - 207