A Fault Feature Extraction Method Based on Second-Order Coupled Step-Varying Stochastic Resonance for Rolling Bearings

被引:3
|
作者
Lu, Lu [1 ]
Yuan, Yu [2 ,3 ]
Chen, Chen [1 ]
Deng, Wu [3 ,4 ]
机构
[1] Dalian Jiaotong Univ, Sch Mech Engn, Dalian 116028, Peoples R China
[2] Dalian Jiaotong Univ, Sch Locomot & Rolling Stock Engn, Dalian 116028, Peoples R China
[3] Southwest Jiaotong Univ, Tract Power State Key Lab, Chengdu 610031, Peoples R China
[4] Civil Aviat Univ China, Coll Elect Informat & Automat, Tianjin 300300, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 07期
基金
中国国家自然科学基金;
关键词
strong noise; SCSSR; weak signals; SNR; SOA; COLONY OPTIMIZATION ALGORITHM; DIAGNOSIS; STRATEGIES;
D O I
10.3390/app10072602
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In mechanical equipment, rolling bearings analyze and monitor their fault based on their vibration signals. Vibration signals obtained are usually weak because the machine works in a noisy background that makes it very difficult to extract its feature. To address this problem, a second-order coupled step-varying stochastic resonance (SCSSR) system is proposed. The system couples two second-order stochastic resonance (SR) systems into a multistable system, one of which is a controlled system and the other of which is a controlling system that uses the output of one system to adjust the output of the other system to enhance the weak signal. In this method, we apply the seeker optimization algorithm (SOA), which uses the output signal-to-noise ratio (SNR) as the estimating function and combines the twice-sampling technology to adaptively select the parameters of the coupled SR system to achieve feature enhancement and collection of the weak periodic signal. The simulation and real fault data of a bearing prove that this method has better results in detecting weak signals, and the system output SNR is higher than the traditional SR method.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Rolling bearing fault feature extraction method based on GWO-optimized adaptive stochastic resonance signal processing
    Zhenya Quan
    Xueliang Zhang
    SN Applied Sciences, 2023, 5
  • [32] Rolling bearing fault feature extraction method based on GWO-optimized adaptive stochastic resonance signal processing
    Quan, Zhenya
    Zhang, Xueliang
    SN APPLIED SCIENCES, 2023, 5 (01):
  • [33] Fractional Lower Order Feature Extraction Method of PF Components of Rolling Bearings
    Xu Q.
    Lin M.
    Liu K.
    Zhao W.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2020, 40 (06): : 1141 - 1149
  • [34] Feature extraction based on vibration signal decomposition for fault diagnosis of rolling bearings
    Hocine Bendjama
    The International Journal of Advanced Manufacturing Technology, 2024, 130 : 821 - 836
  • [35] Feature extraction based on vibration signal decomposition for fault diagnosis of rolling bearings
    Bendjama, Hocine
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 130 (1-2): : 755 - 779
  • [36] Fault feature extraction for rolling bearings based on OOMP and A-T spectrum
    Xia J.
    Zheng J.
    Bai Y.
    Lü Q.
    Yang G.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2019, 38 (21): : 86 - 90and96
  • [37] Initial Fault Feature Extraction for Rolling Bearings Based on Piecewise Matching Pursuit
    Li Wei-min
    Ma Ji-zhao
    Yu Fa-jun
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 3484 - 3488
  • [38] A novel method for fault diagnosis in rolling bearings based on bispectrum signals and combined feature extraction algorithms
    Hashempour, Zohreh
    Agahi, Hamed
    Mahmoodzadeh, Azar
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (04) : 1043 - 1051
  • [39] A Fault Feature Extraction Method of Rolling Bearings Based on Parameter Adaptive Maximum Correlation Kurtosis Deconvolution
    Zhang S.
    Shen M.
    Yang J.
    Wu R.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2022, 56 (03): : 75 - 83
  • [40] Fault feature extraction method of rolling bearings based on singular value decomposition and local mean decomposition
    Wang, Jianguo
    Li, Jian
    Wan, Xudong
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2015, 51 (03): : 104 - 110