Concurrent and Consistent Virtual Machine Introspection with Hardware Transactional Memory

被引:0
|
作者
Liu, Yutao [1 ]
Xia, Yubin [1 ]
Guan, Haibing [2 ]
Zang, Binyu [1 ]
Chen, Haibo [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Parallel & Distributed Syst, Shanghai Key Lab Scalable Comp & Syst, Shanghai 200030, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Comp Sci, Shanghai 200030, Peoples R China
关键词
ARCHITECTURE;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Virtual machine introspection, which provides tamper-resistant, high-fidelity "out of the box" monitoring of virtual machines, has many prominent security applications including VM-based intrusion detection, malware analysis and memory forensic analysis. However, prior approaches are either intrusive in stopping the world to avoid race conditions between introspection tools and the guest VM, or providing no guarantee of getting a consistent state of the guest VM. Further, there is currently no effective means for timely examining the VM states in question. In this paper, we propose a novel approach, called TxIntro, which retrofits hardware transactional memory (HTM) for concurrent, timely and consistent introspection of guest VMs. Specifically, TxIntro leverages the strong atomicity of HTM to actively monitor updates to critical kernel data structures. Then TxIntro can mount introspection to timely detect malicious tampering. To avoid fetching inconsistent kernel states for introspection, TxIntro uses HTM to add related synchronization states into the read set of the monitoring core and thus can easily detect potential infiight concurrent kernel updates. We have implemented and evaluated TxIntro based on Xen VMM on a commodity Intel Haswell machine that provides restricted transactional memory (RTM) support. To demonstrate the effectiveness of TxIntro, we implemented a set of kernel rootkit detectors using TxIntro. Evaluation results show that TxIntro is effective in detecting these rootkits, and is efficient in adding negligible performance overhead.
引用
收藏
页码:416 / 427
页数:12
相关论文
共 50 条
  • [41] Hardware Acceleration of Transactional Memory on Commodity Systems
    Casper, Jared
    Oguntebi, Tayo
    Hong, Sungpack
    Bronson, Nathan G.
    Kozyrakis, Christos
    Olukotun, Kunle
    ACM SIGPLAN NOTICES, 2011, 46 (03) : 27 - 38
  • [42] Consolidated Conflict Detection for Hardware Transactional Memory
    Zhao, Lihang
    Draper, Jeffrey
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT'14), 2014, : 201 - 212
  • [43] Scalable and Reliable Communication for Hardware Transactional Memory
    Pugsley, Seth H.
    Awasthi, Manu
    Madan, Niti
    Muralimanohar, Naveen
    Balasubramonian, Rajeev
    PACT'08: PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES, 2008, : 144 - 154
  • [44] Brief Announcement: Hardware Transactional Persistent Memory
    Giles, Ellis
    Doshi, Kshitij
    Varman, Peter
    SPAA'18: PROCEEDINGS OF THE 30TH ACM SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, 2018, : 227 - 230
  • [45] Hardware Transactional Memory System for Parallel Programming
    Wang Huayong
    Hou Rui
    Wang Kun
    2008 13TH ASIA-PACIFIC COMPUTER SYSTEMS ARCHITECTURE CONFERENCE, 2008, : 21 - 27
  • [46] Supporting transaction nesting in hardware transactional memory
    Liu, Yi
    Wu, Ming-Yu
    Wang, Yong-Hui
    Qian, De-Pei
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (01): : 130 - 136
  • [47] Virtues and Limitations of Commodity Hardware Transactional Memory
    Diegues, Nuno
    Romano, Paolo
    Rodrigues, Luis
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT'14), 2014, : 3 - 14
  • [48] Transactional memory: The hardware-software interface
    McDonald, Austen
    Carlstrom, Brian D.
    Chung, JaeWoong
    Minh, Chi Cao
    Chafi, Hassan
    Kozyrakis, Christos
    Olukotun, Kunle
    IEEE MICRO, 2007, 27 (01) : 67 - 76
  • [49] Migration in Hardware Transactional Memory on Asymmetric Multiprocessor
    Sustran, Zivojin
    Protic, Jelica
    IEEE ACCESS, 2021, 9 (09): : 69346 - 69364
  • [50] Seer: Probabilistic Scheduling for Hardware Transactional Memory
    Diegues, Nuno
    Romano, Paolo
    Garbatov, Stoyan
    ACM TRANSACTIONS ON COMPUTER SYSTEMS, 2017, 35 (03):