Development of a monolith-based process for H2O2-production:: from idea to large-scale implementation

被引:0
|
作者
Albers, RE [1 ]
Nyström, M [1 ]
Siverström, M [1 ]
Sellin, A [1 ]
Dellve, AC [1 ]
Andersson, U [1 ]
Herrmann, W [1 ]
Berglin, T [1 ]
机构
[1] Akzo Nobel, Eka Chem, Bleaching Chem Europe, S-44580 Bohus, Sweden
关键词
monolithic catalyst; liquid-phase hydrogenation; hydrogen peroxide; scale-up;
D O I
暂无
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Akzo Nobel, Eka Chemicals, produces hydrogen peroxide in a large scale using the anthraquinone (AQ) autooxidation process. The key step is the highly selective liquid-phase hydrogenation of the AQs to their corresponding hydroquinones. For this step, a unique hydrogenation technology employing a monolithic catalyst has been developed and implemented. The present contribution outlines the development of this technology from the initial idea to implementation in industrial scale. Examples taken from Ekas patents in this area are used for illustrative purposes. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:247 / 252
页数:6
相关论文
共 50 条
  • [21] Large-scale graphene production by ultrasound-assisted exfoliation of natural graphite in supercritical CO2/H2O medium
    Gao, Hanyang
    Zhu, Kunxu
    Hu, Guoxin
    Xue, Chen
    CHEMICAL ENGINEERING JOURNAL, 2017, 308 : 872 - 879
  • [22] Implementation of multi agents based system for process supervision in large-scale chemical plants
    Natarajan, Sathish
    Srinivasan, Rajagopalan
    COMPUTERS & CHEMICAL ENGINEERING, 2014, 60 : 182 - 196
  • [23] Large-scale synthesis of In2O3 nanowires
    X.S. Peng
    Y.W. Wang
    J. Zhang
    X.F. Wang
    L.X. Zhao
    G.W. Meng
    L.D. Zhang
    Applied Physics A, 2002, 74 : 437 - 439
  • [24] Large-scale synthesis of In2O3 nanowires
    Peng, XS
    Wang, YW
    Zhang, J
    Wang, XF
    Zhao, LX
    Meng, GW
    Zhang, LD
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2002, 74 (03): : 437 - 439
  • [25] MODELING STRUCTURAL DEVELOPMENT OF LARGE-SCALE PRODUCTION TRANSPORTATION SYSTEMS .2. INTERACTION OF MODELS
    KARIBSKII, AV
    TSVIRKUN, AD
    SHISHORIN, YR
    AUTOMATION AND REMOTE CONTROL, 1989, 50 (04) : 541 - 552
  • [26] Development of an automated manufacturing process for large-scale production of autologous T cell therapies
    Francis, Natalie
    Braun, Marion
    Neagle, Sarah
    Peiffer, Sabine
    Bohn, Alexander
    Rosenthal, Alexander
    Olbrich, Tanita
    Lollies, Sophia
    Ilsmann, Keijo
    Hauck, Carola
    Gerstmayer, Bernhard
    Weber, Silvio
    Kirkpatrick, Aileen
    MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2023, 31
  • [27] Large-scale structure from 2dFGRS
    Peacock, JA
    Colless, M
    Baldry, I
    Baugh, C
    Bland-Hawthorn, J
    Bridges, T
    Cannon, R
    Cole, S
    Collins, C
    Couch, W
    Dalton, G
    De Propris, R
    Driver, S
    Efstathiou, G
    Ellis, R
    Frenk, C
    Glazebrook, K
    Jackson, C
    Lahav, O
    Lewis, I
    Lumsden, S
    Maddox, S
    Madgwick, D
    Norberg, P
    Percival, W
    Peterson, B
    Sutherland, W
    Taylor, K
    MAPS OF THE COSMOS, 2005, (216): : 77 - 94
  • [28] Protocol Protocol to operate a large-scale CO2 hydrogenation process for formic acid production
    Bae, Jihoon
    Park, Kwangho
    Usosky, Denis
    Jung, Kwang-Deog
    Lee, Ung
    Kim, Changsoo
    STAR PROTOCOLS, 2024, 5 (02):
  • [29] Fabrication of porous alumina templates with a large-scale tunable interpore distance in a H2C2O4-C2H5OH-H2O solution
    Li Yi
    Ling ZhiYuan
    Wang JinChi
    Chen ShuoShuo
    Hu Xing
    He XinHua
    CHINESE SCIENCE BULLETIN, 2008, 53 (10): : 1608 - 1612
  • [30] Economic material for large-scale H2 Storage and H2-CO2 separation
    Abid, Hussein Rasool
    Keshavarz, Alireza
    Jaffer, Header
    Nile, Basim K.
    Iglauer, Stefan
    JOURNAL OF ENERGY STORAGE, 2024, 75