Deep parameter-free attention hashing for image retrieval

被引:10
|
作者
Yang, Wenjing [1 ]
Wang, Liejun [2 ]
Cheng, Shuli [2 ]
机构
[1] Xinjiang Univ, Coll Software, Urumqi 830046, Peoples R China
[2] Xinjiang Univ, Coll Informat Sci & Engn, Urumqi 830046, Peoples R China
关键词
D O I
10.1038/s41598-022-11217-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deep hashing method is widely applied in the field of image retrieval because of its advantages of low storage consumption and fast retrieval speed. There is a defect of insufficiency feature extraction when existing deep hashing method uses the convolutional neural network (CNN) to extract images semantic features. Some studies propose to add channel-based or spatial-based attention modules. However, embedding these modules into the network can increase the complexity of model and lead to over fitting in the training process. In this study, a novel deep parameter-free attention hashing (DPFAH) is proposed to solve these problems, that designs a parameter-free attention (PFA) module in ResNet18 network. PFA is a lightweight module that defines an energy function to measure the importance of each neuron and infers 3-D attention weights for feature map in a layer. A fast closed-form solution for this energy function proves that the PFA module does not add any parameters to the network. Otherwise, this paper designs a novel hashing framework that includes the hash codes learning branch and the classification branch to explore more label information. The like-binary codes are constrained by a regulation term to reduce the quantization error in the continuous relaxation. Experiments on CIFAR-10, NUS-WIDE and Imagenet-100 show that DPFAH method achieves better performance.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Multiple Spaces Deep Hashing for Image Retrieval
    Wang, Xianyang
    Guo, Qingbei
    Zhao, Xiuyang
    2020 12TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2020, : 397 - 401
  • [32] Unsupervised Deep Triplet Hashing for Image Retrieval
    Meng, Lingtao
    Zhang, Qiuyu
    Yang, Rui
    Huang, Yibo
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1489 - 1493
  • [33] Piecewise supervised deep hashing for image retrieval
    Yannuan Li
    Lin Wan
    Ting Fu
    Weijun Hu
    Multimedia Tools and Applications, 2019, 78 : 24431 - 24451
  • [34] Deep multiscale divergence hashing for image retrieval
    Wang, Xianyang
    Guo, Qingbei
    Zhao, Xiuyang
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (02)
  • [35] Deep Residual Hashing Network for Image Retrieval
    Jimenez-Lepe, Edwin
    Mendez-Vazquez, Andres
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 780 - 781
  • [36] Deep Discriminative Quantization Hashing for Image Retrieval
    Fan, Jingbo
    Chen, Chuanchuan
    Zhu, Yuesheng
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT I, 2018, 11164 : 257 - 266
  • [37] Inductive Transfer Deep Hashing for Image Retrieval
    Ou, Xinyu
    Yan, Lingyu
    Ling, Hefei
    Liu, Cong
    Liu, Maolin
    PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, : 969 - 972
  • [38] Robust Deep Supervised Hashing for Image Retrieval
    Mo, Zhaoguo
    Zhu, Yuesheng
    Zhan, Jiawei
    TWELFTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2020), 2020, 11519
  • [39] Deep Supervised Hashing for Fast Image Retrieval
    Haomiao Liu
    Ruiping Wang
    Shiguang Shan
    Xilin Chen
    International Journal of Computer Vision, 2019, 127 : 1217 - 1234
  • [40] Deep balanced discrete hashing for image retrieval
    Zheng, Xiangtao
    Zhang, Yichao
    Lu, Xiaoqiang
    NEUROCOMPUTING, 2020, 403 : 224 - 236