Energy-Efficient Collaborative Offloading in NOMA-Enabled Fog Computing for Internet of Things

被引:0
|
作者
Feng, Weiyang [1 ]
Zhang, Ning [2 ]
Lin, Siyu [1 ]
Li, Shichao [3 ]
Wang, Zhe [4 ]
Ai, Bo [1 ]
Zhong, Zhangdui [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
[2] Univ Windsor, Dept Elect & Comp Engn, Windsor, ON N9B 3P4, Canada
[3] Guilin Univ Elect Technol, Sch Informat & Commun, Guilin 541004, Peoples R China
[4] China Acad Informat & Commun Technol, Inst China, Technol & Stand Res, Beijing 100191, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Task analysis; Internet of Things; Resource management; NOMA; Collaboration; Energy consumption; Edge computing; Fog computing; Internet of Things (IoT); nonorthogonal multiple access (NOMA); resource allocation; sensor node collaboration; NONORTHOGONAL MULTIPLE-ACCESS; RESOURCE-ALLOCATION; POWER ALLOCATION; EDGE; SYSTEMS; CHALLENGES; NETWORKS; TIME; ASSIGNMENT; CHANNEL;
D O I
10.1109/JIOT.2022.3144571
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we investigate the transmission and offloading strategy in the nonorthogonal multiple access (NOMA)-enabled fog computing system for the Internet of Things (IoT). We aim to minimize the total energy consumption of the IoT system while satisfying the latency requirements. Due to the energy minimization problem is a mixed-integer nonlinear programming, we decompose the problem into two subproblems for different optimizing variables, i.e., fog node selection and resource allocation subproblems, and propose a multinode collaboration transmission and computation (MCTC) algorithm. Specifically, the fog node selection subproblem can be transformed into the assignment problem, which is constructed as a bipartite graph to obtain the node selection strategy. For the resource allocation subproblem, we propose an iterative algorithm to obtain the offloading workload, duration allocation, and computation resource. Simulation results are provided, which demonstrate that the proposed algorithm outperforms the other strategies by 56.88% at least.
引用
收藏
页码:13794 / 13807
页数:14
相关论文
共 50 条
  • [41] Computation Time Minimized Offloading in NOMA-Enabled Wireless Powered Mobile Edge Computing
    Chen, Wenchao
    Wei, Xinchen
    Chi, Kaikai
    Yu, Keping
    Tolba, Amr
    Mumtaz, Shahid
    Guizani, Mohsen
    [J]. IEEE Transactions on Communications, 2024, 72 (11) : 7182 - 7197
  • [42] Coalitional Games for Computation Offloading in NOMA-Enabled Multi-Access Edge Computing
    Pham, Quoc-Viet
    Nguyen, Hoang T.
    Han, Zhu
    Hwang, Won-Joo
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (02) : 1982 - 1993
  • [43] Cost-Effective Task Offloading in NOMA-Enabled Vehicular Mobile Edge Computing
    Du, Jianbo
    Sun, Yan
    Zhang, Ning
    Xiong, Zehui
    Sun, Aijing
    Ding, Zhiguo
    [J]. IEEE SYSTEMS JOURNAL, 2023, 17 (01): : 928 - 939
  • [44] Energy Efficient Dynamic Offloading in Mobile Edge Computing for Internet of Things
    Chen, Ying
    Zhang, Ning
    Zhang, Yongchao
    Chen, Xin
    Wu, Wen
    Shen, Xuemin
    [J]. IEEE TRANSACTIONS ON CLOUD COMPUTING, 2021, 9 (03) : 1050 - 1060
  • [45] NOMA-Enabled CoMP Clustering and Power Control for Green Internet of Things Networks
    Dai, Yanpeng
    Lyu, Ling
    [J]. IEEE ACCESS, 2020, 8 : 90109 - 90117
  • [46] Virtual Fog: A Virtualization Enabled Fog Computing Framework for Internet of Things
    Li, Jianhua
    Jin, Jiong
    Yuan, Dong
    Zhang, Hongke
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2018, 5 (01): : 121 - 131
  • [47] Energy-Efficient Task Offloading for Time-Sensitive Applications in Fog Computing
    Jiang, Yu-Lin
    Chen, Ya-Shu
    Yang, Su-Wei
    Wu, Chia-Hsueh
    [J]. IEEE SYSTEMS JOURNAL, 2019, 13 (03): : 2930 - 2941
  • [48] Delay Guaranteed Energy-efficient Computation Offloading for Industrial IoT in Fog Computing
    Chen, Siguang
    Zheng, Yimin
    Wang, Kun
    Lu, Weifeng
    [J]. ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [49] Energy-efficient UAV-enabled computation offloading for industrial internet of things: a deep reinforcement learning approach
    Shi, Shuo
    Wang, Meng
    Gu, Shushi
    Zheng, Zhong
    [J]. WIRELESS NETWORKS, 2024, 30 (05) : 3921 - 3934
  • [50] An energy-efficient fog-to-cloud Internet of Medical Things architecture
    Tahir, Sabeen
    Bakhsh, Sheikh Tahir
    Abulkhair, Maysoon
    Alassafi, Madini O.
    [J]. INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2019, 15 (05)