Local Approximability of Max-Min and Min-Max Linear Programs

被引:7
|
作者
Floreen, Patrik [1 ]
Hassinen, Marja [1 ]
Kaasinen, Joel [1 ]
Kaski, Petteri [1 ]
Musto, Topi [1 ]
Suomela, Jukka [1 ]
机构
[1] Univ Helsinki, Helsinki Inst Informat Technol HIIT, FIN-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
Approximation algorithms; Distributed algorithms; Linear programs; Local algorithms; PLANAR GRAPHS; VERTEX COVER; ALGORITHMS;
D O I
10.1007/s00224-010-9303-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In a max-min LP, the objective is to maximise omega subject to A xa parts per thousand currency sign1, C xa parts per thousand yen omega 1, and xa parts per thousand yen0. In a min-max LP, the objective is to minimise rho subject to A xa parts per thousand currency sign rho 1, C xa parts per thousand yen1, and xa parts per thousand yen0. The matrices A and C are nonnegative and sparse: each row a (i) of A has at most Delta (I) positive elements, and each row c (k) of C has at most Delta (K) positive elements. We study the approximability of max-min LPs and min-max LPs in a distributed setting; in particular, we focus on local algorithms (constant-time distributed algorithms). We show that for any Delta (I) a parts per thousand yen2, Delta (K) a parts per thousand yen2, and epsilon > 0 there exists a local algorithm that achieves the approximation ratio Delta (I) (1-1/Delta (K) )+epsilon. We also show that this result is the best possible: no local algorithm can achieve the approximation ratio Delta (I) (1-1/Delta (K) ) for any Delta (I) a parts per thousand yen2 and Delta (K) a parts per thousand yen2.
引用
收藏
页码:672 / 697
页数:26
相关论文
共 50 条
  • [41] Pseudo-polynomial algorithms for min-max and min-max regret problems
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    [J]. Operations Research and Its Applications, 2005, 5 : 171 - 178
  • [42] Min-max and min-max (relative) regret approaches to representatives selection problem
    Dolgui, Alexandre
    Kovalev, Sergey
    [J]. 4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2012, 10 (02): : 181 - 192
  • [43] MIN-MAX VS MAX-MIN FLOW-CONTROL ALGORITHMS FOR OPTIMAL COMPUTER NETWORK CAPACITY ASSIGNMENT
    NIZNIK, CA
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (02) : 209 - 224
  • [44] Solving min-max problems and linear semi-infinite programs
    Fang, SC
    Wu, SY
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 32 (06) : 87 - 93
  • [45] Linear optimization with bipolar max-min constraints
    Freson, S.
    De Baets, B.
    De Meyer, H.
    [J]. INFORMATION SCIENCES, 2013, 234 : 3 - 15
  • [46] LINEAR LEXICOGRAPHICALLY EXTENDED MAX-MIN OPTIMIZATION
    MACHT, G
    BEHRINGER, FA
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1980, 60 (7BIS): : T353 - T355
  • [47] Regularized max-min linear discriminant analysis
    Shao, Guowan
    Sang, Nong
    [J]. PATTERN RECOGNITION, 2017, 66 : 353 - 363
  • [48] Solving min-max problems and linear semi-infinite programs
    North Carolina State Univ, Raleigh, United States
    [J]. Comput Math Appl, 6 (87-93):
  • [49] Min-max algorithm for linear multicriterial programming
    Guminski, V.
    [J]. Systems Science, 1989, 15 (02):
  • [50] On the Approximability of Geometric and Geographic Generalization and the Min-Max Bin Covering Problem
    Du, Wenliang
    Eppstein, David
    Goodrich, Michael T.
    Lueker, George S.
    [J]. ALGORITHMS AND DATA STRUCTURES, 2009, 5664 : 242 - +