Lorentz invariance and the unitarity problem in non-commutative field theory

被引:17
|
作者
Morita, K [1 ]
Okumura, Y
Umezawa, E
机构
[1] Nagoya Univ, Dept Phys, Nagoya, Aichi 4648602, Japan
[2] Chubu Univ, Dept Nat Sci, Kasugai, Aichi 4870027, Japan
[3] Fujita Hlth Univ, Sch Hlth Sci, Toyoake, Aichi 4701192, Japan
来源
PROGRESS OF THEORETICAL PHYSICS | 2003年 / 110卷 / 05期
关键词
D O I
10.1143/PTP.110.989
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that the one-loop two-point amplitude in Lorentz-invariant non-commutative (NC) phi(3) theory is finite after subtraction in the commutative limit and satisfies the usual cutting rule. This eliminates the unitarity problem in Lorentz-non-invariant NC field theory in the approximation considered.
引用
收藏
页码:989 / 1001
页数:13
相关论文
共 50 条
  • [1] Simulating non-commutative field theory
    Bietenholz, W
    Hofheinz, F
    Nishimura, J
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2003, 119 : 941 - 946
  • [2] Quasiparticles in non-commutative field theory
    Landsteiner, K
    [J]. NONCOMMUTATIVE STRUCTURES IN MATHEMATICS AND PHYSICS, 2001, 22 : 369 - 378
  • [3] A new non-commutative field theory
    Savvidy, K
    [J]. THEORETICAL PHYSICS: MRST 2002: A TRIBUTE TO GEORGE LEIBBRANDT, 2002, 646 : 89 - 96
  • [4] ISOMETRIES OF NON-COMMUTATIVE LORENTZ SPACES
    CHILIN, VI
    MEDZHITOV, AM
    SUKOCHEV, PA
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1989, 200 (04) : 527 - 545
  • [5] PROBLEM OF LORENTZ INVARIANCE IN LOCAL FIELD THEORY
    TAGUCHI, Y
    YAMAMOTO, K
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1971, 46 (03): : 1000 - &
  • [6] ELEMENTS OF NON-COMMUTATIVE PROBABILITY THEORY AND NON-COMMUTATIVE ERGODIC THEORY
    SINAI, YG
    [J]. THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1971, 16 (03): : 564 - &
  • [7] Non-commutative geometry and symplectic field theory
    Amorim, R. G. G.
    Fernandes, M. C. B.
    Khanna, F. C.
    Santana, A. E.
    Vianna, J. D. M.
    [J]. PHYSICS LETTERS A, 2007, 361 (06) : 464 - 471
  • [8] Hopf algebra of non-commutative field theory
    Tanasa, Adrian
    Vignes-Tourneret, Fabien
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2008, 2 (01) : 125 - 139
  • [9] On spectral invariance of non-commutative tori
    Luef, Franz
    [J]. OPERATOR THEORY, OPERATOR ALGEBRAS, AND APPLICATIONS, 2006, 414 : 131 - 146
  • [10] THE NON-COMMUTATIVE HARDY-LITTLEWOOD MAXIMAL OPERATOR ON NON-COMMUTATIVE LORENTZ SPACES
    Bekbayev, N. T.
    Tulenov, K. S.
    [J]. JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2020, 106 (02): : 31 - 38