Hopf algebra of non-commutative field theory

被引:0
|
作者
Tanasa, Adrian [1 ,2 ]
Vignes-Tourneret, Fabien [3 ]
机构
[1] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France
[2] Inst Fiz Ingn Nucl H Hulubei, Dep Fiz Teoret, Bucharest 077125, Romania
[3] IHES, F-91440 Bures Sur Yvette, France
关键词
quantum field theory; renormalization; non-commutative geometry; Hopf algebra;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct here the Hopf algebra structure underlying the process of renormalization of non-commutative quantum field theory.
引用
收藏
页码:125 / 139
页数:15
相关论文
共 50 条
  • [1] Non-commutative Hopf algebra of formal diffeomorphisms
    Brouder, C
    Frabetti, A
    Krattenthaler, C
    [J]. ADVANCES IN MATHEMATICS, 2006, 200 (02) : 479 - 524
  • [2] A combinatorial non-commutative Hopf algebra of graphs
    Duchamp, Gerard H. E.
    Foissy, Loic
    Nguyen Hoang-Nghia
    Manchon, Dominique
    Tanasa, Adrian
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2014, 16 (01): : 355 - 370
  • [3] A NON-COMMUTATIVE NON-COCOMMUTATIVE HOPF ALGEBRA IN NATURE
    PAREIGIS, B
    [J]. JOURNAL OF ALGEBRA, 1981, 70 (02) : 356 - 374
  • [4] Simulating non-commutative field theory
    Bietenholz, W
    Hofheinz, F
    Nishimura, J
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2003, 119 : 941 - 946
  • [5] A new non-commutative field theory
    Savvidy, K
    [J]. THEORETICAL PHYSICS: MRST 2002: A TRIBUTE TO GEORGE LEIBBRANDT, 2002, 646 : 89 - 96
  • [6] Quasiparticles in non-commutative field theory
    Landsteiner, K
    [J]. NONCOMMUTATIVE STRUCTURES IN MATHEMATICS AND PHYSICS, 2001, 22 : 369 - 378
  • [7] The non-commutative Weil algebra
    A. Alekseev
    E. Meinrenken
    [J]. Inventiones mathematicae, 2000, 139 : 135 - 172
  • [8] The non-commutative Weil algebra
    Alekseev, A
    Meinrenken, E
    [J]. INVENTIONES MATHEMATICAE, 2000, 139 (01) : 135 - 172
  • [9] String field theory, non-commutative Chern-Simons theory and Lie algebra cohomology
    Gross, DJ
    Periwal, V
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2001, (08):
  • [10] Non-commutative probability and non-commutative processes: Beyond the Heisenberg algebra
    Mendes, R. Vilela
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (09)