The non-commutative Weil algebra

被引:0
|
作者
A. Alekseev
E. Meinrenken
机构
[1] Institute for Theoretical Physics,
[2] Uppsala University,undefined
[3] Box 803,undefined
[4] S-75108 Uppsala,undefined
[5] Sweden¶(e-mail: alekseev@teorfys.uu.se),undefined
[6] University of Toronto,undefined
[7] Department of Mathematics,undefined
[8] 100 St George Street,undefined
[9] Toronto,undefined
[10] Ontario M5S3G3,undefined
[11] Canada (e-mail: mein@math.toronto.edu),undefined
来源
Inventiones mathematicae | 2000年 / 139卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For any compact Lie group G, together with an invariant inner product on its Lie algebra ?, we define the non-commutative Weil algebra ?G as a tensor product of the universal enveloping algebra U(?) and the Clifford algebra Cl(?). Just like the usual Weil algebra WG=S(?*)⊗∧?*, ?G carries the structure of an acyclic, locally free G-differential algebra and can be used to define equivariant cohomology ℋG(B) for any G-differential algebra B. We construct an explicit isomorphism ?: WG→?G of the two Weil algebras as G-differential spaces, and prove that their multiplication maps are G-chain homotopic. This implies that the map in cohomology HG(B)→ℋG(B) induced by ? is a ring isomorphism. For the trivial G-differential algebra B=ℝ, this reduces to the Duflo isomorphism S(?)G≅U(?)G between the ring of invariant polynomials and the ring of Casimir elements.
引用
收藏
页码:135 / 172
页数:37
相关论文
共 50 条