Avoided level crossings in an elliptic billiard

被引:8
|
作者
Kim, Ji-Hwan [1 ]
Kim, Jaewon [1 ]
Yi, Chang-Hwan [1 ,2 ]
Yu, Hyeon-Hye [1 ]
Lee, Ji-Won [1 ]
Kim, Chil-Min [1 ]
机构
[1] DGIST, Dept Emerging Mat Sci, Daegu 42988, South Korea
[2] Otto von Guericke Univ, Inst Theoret Phys, Postfach 4120, D-39016 Magdeburg, Germany
基金
新加坡国家研究基金会;
关键词
PERIODIC-ORBITS; QUANTUM; EIGENVALUES; STATIONARY; TRANSITION; SPECTRUM; SYSTEMS; MOTION; SCARS; MODES;
D O I
10.1103/PhysRevE.96.042205
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In an elliptic billiard, we find avoided level crossings taking place over wide ranges, which are of a Demkov type for generations of eigenfunctions localized on an islands chain and its pair unstable periodic orbit. For a proof of the existence of avoided level crossings, first, we show that the quantized eigenvalue of the unstable periodic orbit, obtained by the Einstein-Brillouin-Keller quantization rule, passes the eigenvalues of bouncing-ball modes localized on the unstable periodic orbit after Demkov type avoided level crossings so that pairs of bouncing-ball modes are sequentially generated. Next, by using a perturbed Hamiltonian, we show that off-diagonal elements in Hamiltonian are nonzero, which give rise to an interaction between two eigenfunctions. Last, we verify that the observed phenomenon is Fermi resonance: that is, the quantum number difference of two normal modes equals the periodic orbits, where eigenfunctions are localized after an avoided level crossing.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Stark resonances of the Yukawa potential: Energies and widths, crossings and avoided crossings
    Pawlak, Mariusz
    Bylicki, Miroslaw
    PHYSICAL REVIEW A, 2011, 83 (02):
  • [42] Complex Caustics of the Elliptic Billiard
    Fierobe C.
    Arnold Mathematical Journal, 2021, 7 (1) : 1 - 30
  • [43] Multimode optomechanical dynamics in a cavity with avoided crossings
    D. Lee
    M. Underwood
    D. Mason
    A.B. Shkarin
    S.W. Hoch
    J.G.E. Harris
    Nature Communications, 6
  • [44] An Egorov Theorem for Avoided Crossings of Eigenvalue Surfaces
    Kammerer, Clotilde Fermanian
    Lasser, Caroline
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (03) : 1011 - 1057
  • [45] SINGULAR BEHAVIOR AT AVOIDED CROSSINGS IN AN ITERATIVE PERTURBATION
    XU, GO
    WANG, WG
    YANG, YT
    PHYSICAL REVIEW A, 1992, 45 (08): : 5401 - 5407
  • [46] DISTRIBUTION OF MULTIPLE AVOIDED CROSSINGS - NUMERICAL EVALUATION
    GOLDBERG, J
    SCHWEIZER, W
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (12): : 2785 - 2791
  • [47] An Egorov Theorem for Avoided Crossings of Eigenvalue Surfaces
    Clotilde Fermanian Kammerer
    Caroline Lasser
    Communications in Mathematical Physics, 2017, 353 : 1011 - 1057
  • [48] Diamagnetic informational exchange in hydrogenic avoided crossings
    González-Férez, R
    Dehesa, JS
    CHEMICAL PHYSICS LETTERS, 2003, 373 (5-6) : 615 - 619
  • [49] Multimode optomechanical dynamics in a cavity with avoided crossings
    Lee, D.
    Underwood, M.
    Mason, D.
    Shkarin, A. B.
    Hoch, S. W.
    Harris, J. G. E.
    NATURE COMMUNICATIONS, 2015, 6
  • [50] NONADIABATIC TRANSITIONS THROUGH TILTED AVOIDED CROSSINGS
    Betz, Volker
    Goddard, Benjamin D.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05): : 2247 - 2276