Modelling Forest Species Using Lidar-Derived Metrics of Forest Canopy Gaps

被引:2
|
作者
Lombard, Leighton [1 ]
Ismail, Riyad [1 ,2 ]
Poona, Nitesh K. [1 ]
机构
[1] Stellenbosch Univ, Dept Geog & Environm Studies, Stellenbosch, South Africa
[2] Sappi Forests, Johannesburg, South Africa
来源
SOUTH AFRICAN JOURNAL OF GEOMATICS | 2020年 / 9卷 / 01期
基金
新加坡国家研究基金会;
关键词
OBJECT-BASED CLASSIFICATION; INDIVIDUAL TREES; MULTIRESOLUTION SEGMENTATION; INTENSITY; FEATURES; IMAGERY; PARAMETERS; VARIABLES; BIOMASS; HEIGHT;
D O I
10.4314/sajg.v9i1.3
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
LiDAR intensity and texture features have reported high accuracies for discriminating forest species, particularly with the utility of the random forest (RF) algorithm. To date, limited studies has utilized LiDAR-derived forest gap information to assist in forest species discrimination. In this study, LiDAR intensity and texture features were extracted from forest canopy gaps to discriminate Eucalyptus grandis and Eucalyptus dunnii within a forest plantation. Additionally, LiDAR intensity and texture information was extracted for both canopy gaps and forest canopy and utilized for species discrimination. Using LiDAR intensity and texture information extracted for both canopy gap and forest canopy, resulted in a model accuracy of 94.74% (KHAT = 0.88). Using only canopy gap information, the RF model obtained an overall accuracy of 90.91% (KHAT = 0.81). The results highlight the potential for using canopy gap information for commercial species discrimination and mapping.
引用
收藏
页码:31 / 43
页数:13
相关论文
共 50 条
  • [31] URBAN FOREST CANOPY EXTRACTION USING LIDAR DATA
    Mariappan, Muneeswaran
    Krishnan, Vani
    Murugaiya, Ramalingam
    Kolanuvada, Srinivasa Raju
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2015, 14 (10): : 2333 - 2340
  • [32] FOREST CANOPY COVER ANALYSIS USING UAS LIDAR
    Liu, Qingwang
    Li, Shiming
    Hu, Kailong
    Pang, Yong
    Li, Zengyuan
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2863 - 2866
  • [33] Assessment of Errors Caused by Forest Vegetation Structure in Airborne LiDAR-Derived DTMs
    Simpson, Jake E.
    Smith, Thomas E. L.
    Wooster, Martin J.
    REMOTE SENSING, 2017, 9 (11):
  • [34] Generalized models for subtropical forest inventory attribute estimations using a rule-based exhaustive combination approach with airborne LiDAR-derived metrics
    Li, Chungan
    Chen, Zhongchao
    Zhou, Xiangbei
    Zhou, Mei
    Li, Zhen
    GISCIENCE & REMOTE SENSING, 2023, 60 (01)
  • [35] A comparison of machine learning regression techniques for LiDAR-derived estimation of forest variables
    Garcia-Gutierrez, J.
    Martinez-Alvarez, F.
    Troncoso, A.
    Riquelme, J. C.
    NEUROCOMPUTING, 2015, 167 : 24 - 31
  • [36] Imaging spectroscopy- and lidar-derived estimates of canopy composition and structure to improve predictions of forest carbon fluxes and ecosystem dynamics
    Antonarakis, A. S.
    Munger, J. W.
    Moorcroft, P. R.
    GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (07) : 2535 - 2542
  • [37] Using LiDAR-derived vegetation metrics for high-resolution, species distribution models for conservation planning
    Farrell, S. L.
    Collier, B. A.
    Skow, K. L.
    Long, A. M.
    Campomizzi, A. J.
    Morrison, M. L.
    Hays, K. B.
    Wilkins, R. N.
    ECOSPHERE, 2013, 4 (03):
  • [38] Detecting forest canopy gaps using unoccupied aerial vehicle RGB imagery in a species-rich subtropical forest
    Chen, Jiale
    Wang, Li
    Jucker, Tommaso
    Da, Hongzhi
    Zhang, Zhaochen
    Hu, Jianbo
    Yang, Qingsong
    Wang, Xihua
    Qin, Yuchu
    Shen, Guochun
    Shu, Li
    Zhang, Jian
    REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2023, 9 (05) : 671 - 686
  • [39] Per-segment Aboveground Forest Biomass Estimation Using LIDAR-Derived Height Percentile Statistics
    Riggins, John J.
    Tullis, Jason A.
    Stephen, Fred M.
    GISCIENCE & REMOTE SENSING, 2009, 46 (02) : 232 - 248
  • [40] Retrieval of Forest Vertical Structure from PolInSAR Data by Machine Learning Using LIDAR-Derived Features
    Brigot, Guillaume
    Simard, Marc
    Colin-Koeniguer, Elise
    Boulch, Alexandre
    REMOTE SENSING, 2019, 11 (04)