UV-Sintered Low-Temperature Solution-Processed SnO2 as Robust Electron Transport Layer for Efficient Planar Heterojunction Perovskite Solar Cells

被引:127
|
作者
Huang, Like [1 ]
Sun, Xiaoxiang [1 ]
Li, Chang [1 ]
Xu, Jie [2 ]
Xu, Rui [1 ]
Du, Yangyang [1 ]
Ni, Jian [1 ]
Cai, Hongkun [1 ]
Li, Juan [1 ]
Hu, Ziyang [2 ]
Zhang, Jianjun [1 ]
机构
[1] Nankai Univ, Coll Elect Informat & Opt Engn, Tianjin Key Lab Opt Elect Thin Film Devices & Tec, Tianjin 300071, Peoples R China
[2] Ningbo Univ, Dept Microelect Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
tin dioxide; UV irradiation; low temperature processing electron transport layer; perovskite solar cells; HIGH-PERFORMANCE; PHOTOCHEMICAL ACTIVATION; OXYGEN VACANCIES; TIN OXIDE; TIO2; PHOTOLUMINESCENCE; GROWTH; FILMS; NANOPARTICLES; COVERAGE;
D O I
10.1021/acsami.7b04392
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recently, low temperature solution-processed tin oxide (SnO2) as a versatile electron transport layer (ETL) for efficient and robust planar heterojunction (PH) perovskite solar cells (PSCs) has attracted particular attention due to its outstanding properties such as high optical transparency, high electron mobility, and suitable band alignment. However, for most of the reported works, an annealing temperature of 180 degrees C is generally required. This temperature is reluctantly considered to be a low temperature, especially with respect to the flexible application where 180 degrees C is still too high for the polyethylene terephthalate flexible substrate to bear. In this contribution, low temperature (about 70 degrees C) UV/ozone treatment was applied to in situ synthesis of SnO2 films deposited on the fluorine-doped tin oxide substrate as ETL. This method is a facile photochemical treatment which is simple to operate and can easily eliminate the organic components. Accordingly, PH PSCs with UV-sintered SnO2 films as ETL were successfully fabricated for the first time. The device exhibited excellent photovoltaic performance as high as 16.21%, which is even higher than the value (11.49%) reported for a counterpart device with solution-processed and high temperature annealed SnO2 films as ETL. These low temperature solution-processed and UV-sintered SnO2 films are suitable for the low-cost, large yield solution process on a flexible substrate for optoelectronic devices.
引用
收藏
页码:21909 / 21920
页数:12
相关论文
共 50 条
  • [21] Low-Temperature Solution-Processed ZnO Electron Transport Layer for Highly Efficient and Stable Planar Perovskite Solar Cells with Efficiency Over 20%
    Ma, Jing
    Lin, Zhenhua
    Guo, Xing
    Zhou, Long
    Su, Jie
    Zhang, Chunfu
    Yang, Zhou
    Chang, Jingjing
    Liu, Shengzhong
    Hao, Yue
    SOLAR RRL, 2019, 3 (07)
  • [22] Low-temperature solution-processed ionic liquid modified SnO2 as an excellent electron transport layer for inverted organic solar cells
    Van-Huong Tran
    Khan, Rizwan
    Lee, In-Hwan
    Lee, Soo-Hyoung
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 179 : 260 - 269
  • [23] Characterization of perovskite solar cells with a solution-processed two-stage SnO2 electron transport layer
    Kim, Ma Ro
    Kim, Sang Mo
    Bark, Chung Wung
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2022, 735 (01) : 75 - 83
  • [24] Improvement of planar perovskite solar cells by using solution processed SnO2/CdS as electron transport layer
    Mohamadkhani, Fateme
    Javadpour, Sirus
    Taghavinia, Nima
    SOLAR ENERGY, 2019, 191 : 647 - 653
  • [25] Solution-Processed SnO2 Quantum Dots for the Electron Transport Layer of Flexible and Printed Perovskite Solar Cells
    Kiani, Muhammad Salman
    Sadirkhanov, Zhandos T.
    Kakimov, Alibek G.
    Parkhomenko, Hryhorii P.
    Ng, Annie
    Jumabekov, Askhat N.
    NANOMATERIALS, 2022, 12 (15)
  • [26] High-Efficiency and UV-Stable Planar Perovskite Solar Cells Using a Low-Temperature, Solution-Processed Electron-Transport Layer
    Liu, Cheng
    Yang, Yi
    Ding, Yong
    Xu, Jia
    Liu, Xiaolong
    Zhang, Bing
    Yao, Jianxi
    Hayat, Tasawar
    Alsaedi, Ahmed
    Dai, Songyuan
    CHEMSUSCHEM, 2018, 11 (07) : 1232 - 1237
  • [27] Low-temperature processed highly efficient hole transport layer free carbon-based planar perovskite solar cells with SnO2 quantum dot electron transport layer
    Vijayaraghavan, S. N.
    Wall, J.
    Li, L.
    Xing, G.
    Zhang, Q.
    Yan, F.
    MATERIALS TODAY PHYSICS, 2020, 13
  • [28] Low-Temperature Processed TiOxElectron Transport Layer for Efficient Planar Perovskite Solar Cells
    Shahiduzzaman, Md.
    Kuwahara, Daiki
    Nakano, Masahiro
    Karakawa, Makoto
    Takahashi, Kohshin
    Nunzi, Jean-Michel
    Taima, Tetsuya
    NANOMATERIALS, 2020, 10 (09) : 1 - 12
  • [29] Ni-Doped SnO2 as an Electron Transport Layer by a Low-Temperature Process in Planar Perovskite Solar Cells
    Quy, Hoang V.
    Bark, Chung W.
    ACS OMEGA, 2022, 7 (26): : 22256 - 22262
  • [30] Solution-processed Zn2SnO4 electron transporting layer for efficient planar perovskite solar cells
    Wu, Wu-Qiang
    Chen, Dehong
    Li, Feng
    Cheng, Yi-Bing
    Caruso, Rachel A.
    MATERIALS TODAY ENERGY, 2018, 7 : 260 - 266