Single Image Super-resolution Using Spatial Transformer Networks

被引:0
|
作者
Wang, Qiang [1 ,2 ]
Fan, Huijie [1 ]
Cong, Yang [1 ]
Tang, Yandong [1 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Liaoning, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Spatial Transformer; Super-Resolution; Convolution;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Most of the previous models performed well for Single Image Super-Resolution (SISR). In these methods, the Low Resolution (LR) input image is amplified to the size of High Resolution (HR) through bicubic interpolation. However, bicubic interpolation can not represent the high frequency features of images with only one filter. Therefore, in this paper, we used a original framework which can effectively extract the feature maps from the input image space and transform to HR feature maps based on Spatial Transformer Networks (STN). In our STN-SR method, there are three kinds of parameters should be learned from the model: (i) a serial of filters to extract LR image feature maps; (ii)a local small network to learn parameters of the transformation Gamma(theta) (G) and (iii) the filter parameters to restore the HR patchs from the input HR feature maps through a restoring layer. Our model directly focus on the whole image, the proposed STN-SR method does not clip the image into many small size patches, and can use the image gobal message to rebuild more robust local texture. Compared to privious SR methods, the proposed STN-SR method can gain completely real image, while illustrating better edge and texture preservation performance.
引用
收藏
页码:564 / 567
页数:4
相关论文
共 50 条
  • [41] Learning a Mixture of Deep Networks for Single Image Super-Resolution
    Liu, Ding
    Wang, Zhaowen
    Nasrabadi, Nasser
    Huang, Thomas
    COMPUTER VISION - ACCV 2016, PT III, 2017, 10113 : 145 - 156
  • [42] Single image super-resolution based on convolutional neural networks
    Zou, Lamei
    Luo, Ming
    Yang, Weidong
    Li, Peng
    Jin, Liujia
    MIPPR 2017: PATTERN RECOGNITION AND COMPUTER VISION, 2017, 10609
  • [43] Feedback Pyramid Attention Networks for Single Image Super-Resolution
    Wu, Huapeng
    Gui, Jie
    Zhang, Jun
    Kwok, James T.
    Wei, Zhihui
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (09) : 4881 - 4892
  • [44] Blind single image super-resolution with a mixture of deep networks
    Wang, Yifan
    Wang, Lijun
    Wang, Hongyu
    Li, Peihua
    Lu, Huchuan
    PATTERN RECOGNITION, 2020, 102
  • [45] Enhanced pyramidal residual networks for single image super-resolution
    Babaoğlu İ.
    Kahveci S.
    Kılıç A.
    Neural Computing and Applications, 2024, 36 (19) : 11563 - 11577
  • [46] Wide receptive field networks for single image super-resolution
    Yang, Haoran
    Tong, Jiahui
    Dou, Qingyu
    Xiao, Long
    Jeon, Gwanggil
    Yang, Xiaomin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (04) : 4859 - 4876
  • [47] Wide receptive field networks for single image super-resolution
    Haoran Yang
    Jiahui Tong
    Qingyu Dou
    Long Xiao
    Gwanggil Jeon
    Xiaomin Yang
    Multimedia Tools and Applications, 2022, 81 : 4859 - 4876
  • [48] Hierarchical Generative Adversarial Networks for Single Image Super-Resolution
    Chen, Weimin
    Ma, Yuqing
    Liu, Xianglong
    Yuan, Yi
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 355 - 364
  • [49] Pyramidal dense attention networks for single image super-resolution
    Wu, Huapeng
    Gui, Jie
    Zhang, Jun
    Kwok, James T.
    Wei, Zhihui
    IET IMAGE PROCESSING, 2022, 16 (12) : 3247 - 3257
  • [50] Single Image Super-resolution using Deformable Patches
    Zhu, Yu
    Zhang, Yanning
    Yuille, Alan L.
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 2917 - 2924