Finite-size effects on the convergence time in continuous-opinion dynamics

被引:4
|
作者
Jo, Hang-Hyun [1 ]
Masuda, Naoki [2 ,3 ]
机构
[1] Catholic Univ Korea, Dept Phys, Bucheon 14662, South Korea
[2] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
[3] SUNY Buffalo, Computat & Data Enabled Sci & Engn Program, Buffalo, NY 14260 USA
基金
新加坡国家研究基金会;
关键词
VOTER MODEL; BOUNDED CONFIDENCE; CONSENSUS; ALGORITHMS; TUTORIAL;
D O I
10.1103/PhysRevE.104.014309
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study finite-size effects on the convergence time in a continuous-opinion dynamics model. In the model, each individual's opinion is represented by a real number on a finite interval, e.g., [0,1], and a uniformly randomly chosen individual updates its opinion by partially mimicking the opinion of a uniformly randomly chosen neighbor. We numerically find that the characteristic time to the convergence increases as the system size increases according to a particular functional form in the case of lattice networks. In contrast, unless the individuals perfectly copy the opinion of their neighbors in each opinion updating, the convergence time is approximately independent of the system size in the case of regular random graphs, uncorrelated scale-free networks, and complete graphs. We also provide a mean-field analysis of the model to understand the case of the complete graph.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Finite-size effects in the dynamics of glass-forming liquids
    Berthier, Ludovic
    Biroli, Giulio
    Coslovich, Daniele
    Kob, Walter
    Toninelli, Cristina
    PHYSICAL REVIEW E, 2012, 86 (03):
  • [22] Finite-size effects on the Hamiltonian dynamics of the XY-model
    Lepri, S
    Ruffo, S
    EUROPHYSICS LETTERS, 2001, 55 (04): : 512 - 517
  • [23] Finite-size effects on the dynamics of the zero-range process
    Gupta, Shamik
    Barma, Mustansir
    Majumdar, Satya N.
    PHYSICAL REVIEW E, 2007, 76 (06):
  • [24] Finite-size effects in dynamics of zero-range processes
    Juntunen, Janne
    Pulkkinen, Otto
    Merikoski, Juha
    PHYSICAL REVIEW E, 2010, 82 (03):
  • [25] Finite-size effects of hysteretic dynamics in multilayer graphene on a ferroelectric
    Morozovska, Anna N.
    Pusenkova, Anastasiia S.
    Varenyk, Oleksandr V.
    Kalinin, Sergei V.
    Eliseev, Eugene A.
    Strikha, Maxym V.
    PHYSICAL REVIEW B, 2015, 91 (23):
  • [26] Finite-size effects on QGP
    Brink, DM
    Lo Monaco, L
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1998, 24 (04) : 867 - 882
  • [27] Finite-size effects in microrheology
    Santamaria-Holek, I.
    Rubi, J. M.
    JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (06):
  • [28] FINITE-SIZE EFFECTS IN A SANDPILE
    LIU, CH
    JAEGER, HM
    NAGEL, SR
    PHYSICAL REVIEW A, 1991, 43 (12): : 7091 - 7092
  • [29] FINITE-SIZE EFFECTS ON MULTIFRACTALS
    KAUFMANN, Z
    PHYSICAL REVIEW A, 1991, 44 (10): : 6923 - 6925
  • [30] Time crystallinity and finite-size effects in clean Floquet systems
    Pizzi, Andrea
    Malz, Daniel
    De Tomasi, Giuseppe
    Knolle, Johannes
    Nunnenkamp, Andreas
    PHYSICAL REVIEW B, 2020, 102 (21)