Finite-size effects on the convergence time in continuous-opinion dynamics

被引:2
|
作者
Jo, Hang-Hyun [1 ]
Masuda, Naoki [2 ,3 ]
机构
[1] Catholic Univ Korea, Dept Phys, Bucheon 14662, South Korea
[2] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
[3] SUNY Buffalo, Computat & Data Enabled Sci & Engn Program, Buffalo, NY 14260 USA
基金
新加坡国家研究基金会;
关键词
VOTER MODEL; BOUNDED CONFIDENCE; CONSENSUS; ALGORITHMS; TUTORIAL;
D O I
10.1103/PhysRevE.104.014309
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study finite-size effects on the convergence time in a continuous-opinion dynamics model. In the model, each individual's opinion is represented by a real number on a finite interval, e.g., [0,1], and a uniformly randomly chosen individual updates its opinion by partially mimicking the opinion of a uniformly randomly chosen neighbor. We numerically find that the characteristic time to the convergence increases as the system size increases according to a particular functional form in the case of lattice networks. In contrast, unless the individuals perfectly copy the opinion of their neighbors in each opinion updating, the convergence time is approximately independent of the system size in the case of regular random graphs, uncorrelated scale-free networks, and complete graphs. We also provide a mean-field analysis of the model to understand the case of the complete graph.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Noisy continuous-opinion dynamics
    Pineda, M.
    Toral, R.
    Hernandez-Garcia, E.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [2] Mass media and repulsive interactions in continuous-opinion dynamics
    Martins, T. Vaz
    Pineda, M.
    Toral, R.
    [J]. EPL, 2010, 91 (04)
  • [3] Finite-size effects of avalanche dynamics
    Eurich, CW
    Herrmann, JM
    Ernst, UA
    [J]. PHYSICAL REVIEW E, 2002, 66 (06): : 15
  • [4] Diffusive domain coarsening: Early time dynamics and finite-size effects
    Majumder, Suman
    Das, Subir K.
    [J]. PHYSICAL REVIEW E, 2011, 84 (02):
  • [5] Finite size effects in the dynamics of opinion formation
    Toral, Raul
    Tessone, Claudio J.
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2007, 2 (02) : 177 - 195
  • [6] Apparent finite-size effects in the dynamics of supercooled liquids
    Kim, K
    Yamamoto, R
    [J]. PHYSICAL REVIEW E, 2000, 61 (01): : R41 - R44
  • [7] Finite-size effects in dissipative particle dynamics simulations
    Velázquez, ME
    Gama-Goicochea, A
    González-Melchor, M
    Neria, M
    Alejandre, J
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (08):
  • [8] Finite-size effects, demographic noise, and ecosystem dynamics
    Sabiha Majumder
    Ayan Das
    Appilineni Kushal
    Sumithra Sankaran
    Vishwesha Guttal
    [J]. The European Physical Journal Special Topics, 2021, 230 : 3389 - 3401
  • [9] Finite-size effects, demographic noise, and ecosystem dynamics
    Majumder, Sabiha
    Das, Ayan
    Kushal, Appilineni
    Sankaran, Sumithra
    Guttal, Vishwesha
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (16-17): : 3389 - 3401
  • [10] Finite-size effects in ultrafast remagnetization dynamics of FePt
    Willig, L.
    von Reppert, A.
    Deb, M.
    Ganss, F.
    Hellwig, O.
    Bargheer, M.
    [J]. PHYSICAL REVIEW B, 2019, 100 (22)