Inverse coefficient problems for variational inequalities:: Optimality conditions and numerical realization

被引:34
|
作者
Hintermüller, M [1 ]
机构
[1] Karl Franzens Univ Graz, Dept Math, A-8010 Graz, Austria
关键词
bilevel problem; complementarity function; inverse problem; optimal control; variational inequality;
D O I
10.1051/m2an:2001109
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the identification of a distributed parameter in an elliptic variational inequality. On the basis of an optimal control problem formulation, the application of a primal-dual penalization technique enables us to prove the existence of multipliers giving a first order characterization of the optimal solution. Concerning the parameter we consider different regularity requirements. For the numerical realization we utilize a complementarity function, which allows us to rewrite the optimality conditions as a set of equalities. Finally, numerical results obtained from a least squares type algorithm emphasize the feasibility of our approach.
引用
收藏
页码:129 / 152
页数:24
相关论文
共 50 条
  • [21] Inverse Coefficient Problems for Elliptic Hemivariational Inequalities
    Xiao, Cui'e
    Liu, Zhenhai
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2010, 31 (04) : 473 - 480
  • [22] INVERSE COEFFICIENT PROBLEMS FOR PARABOLIC HEMIVARIATIONAL INEQUALITIES
    刘振海
    I. Szntó
    Acta Mathematica Scientia, 2011, 31 (04) : 1318 - 1326
  • [23] Necessary optimality conditions for control of strongly monotone variational inequalities
    Ye, JJ
    CONTROL OF DISTRIBUTED PARAMETER AND STOCHASTIC SYSTEMS, 1999, 13 : 153 - 160
  • [24] Inverse problems for vector variational and vector quasi-variational inequalities
    Hebestreit N.
    Khan A.A.
    Tammer C.
    Applied Set-Valued Analysis and Optimization, 2019, 1 (03): : 307 - 317
  • [25] Optimality conditions for bilevel optimal control problems with non-convex quasi-variational inequalities
    El Idrissi, Rachid
    Lafhim, Lahoussine
    Kalmoun, El Mostafa
    Ouakrim, Youssef
    RAIRO-OPERATIONS RESEARCH, 2024, 58 (02) : 1789 - 1805
  • [26] Optimality Conditions for Variational Problems in Incomplete Functional Spaces
    Mohammadi, Ashkan
    Mordukhovich, Boris S.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 193 (1-3) : 139 - 157
  • [27] Optimality Conditions for Variational Problems in Incomplete Functional Spaces
    Ashkan Mohammadi
    Boris S. Mordukhovich
    Journal of Optimization Theory and Applications, 2022, 193 : 139 - 157
  • [28] Variational formulation of inverse coefficient problems for elastic bodies
    Vatul'yan, A. O.
    DOKLADY PHYSICS, 2008, 53 (09) : 497 - 499
  • [29] Variational formulation of inverse coefficient problems for elastic bodies
    A. O. Vatul’yan
    Doklady Physics, 2008, 53 : 497 - 499
  • [30] Optimality Conditions for Multiobjective Optimization Problem Constrained by Parameterized Variational Inequalities
    Li-Ping Pang
    Fan-Yun Meng
    Shuang Chen
    Dan Li
    Set-Valued and Variational Analysis, 2014, 22 : 285 - 298