Chaos control and synchronization, with input saturation, via recurrent neural networks

被引:31
|
作者
Sanchez, EN [1 ]
Ricalde, LJ [1 ]
机构
[1] Univ Guadalajara, CINVESTAV, Guadalajara 45091, Jalisco, Mexico
关键词
recurrent neural networks; trajectory tracking; adaptive control; input saturation; Lyapunov function; stability;
D O I
10.1016/S0893-6080(03)00122-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper deals with the adaptive tracking problem of non-linear systems in presence of unknown parameters, unmodelled dynamics and input saturation. A high order recurrent neural network is used in order to identify the unknown system and a learning law is obtained using the Lyapunov methodology. Then a stabilizing control law for the reference tracking error dynamics is developed using the Lyapunov methodology and the Sontag control law. Tracking error boundedness is established as a function of a design parameter. The new approach is illustrated by examples of complex dynamical systems: chaos control and synchronization. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:711 / 717
页数:7
相关论文
共 50 条
  • [31] Synchronization Control for Chaotic Neural Networks with Mixed Delays Under Input Saturations
    Liuyuan Chen
    Yonggang Chen
    Nannan Zhang
    Neural Processing Letters, 2021, 53 : 3735 - 3755
  • [32] Lambda and the Edge of Chaos in Recurrent Neural Networks
    Seifter, Jared
    Reggia, James A.
    ARTIFICIAL LIFE, 2015, 21 (01) : 55 - 71
  • [33] Event-based asynchronous communication and sampled control for synchronization of multiagent networks with input saturation
    Zhang, Liangyin
    Chen, Michael Z. Q.
    Su, Housheng
    Chen, Guanrong
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2018, 28 (05) : 1871 - 1885
  • [34] Synchronization of Fractional Reaction-Diffusion Neural Networks With Time-Varying Delays and Input Saturation
    Wang, Yin
    Liu, Shutang
    Wu, Xiang
    IEEE ACCESS, 2021, 9 : 50907 - 50916
  • [35] Finite-time synchronization of stochastic coupled neural networks subject to Markovian switching and input saturation
    Selvaraj, P.
    Sakthivel, R.
    Kwon, O. M.
    NEURAL NETWORKS, 2018, 105 : 154 - 165
  • [36] Chaos synchronization via multivariable PID control
    Wen, Guilin
    Wang, Qing-Guo
    Lin, Chong
    Li, Guangyao
    Han, Xu
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (05): : 1753 - 1758
  • [37] Chaos Synchronization via Ameliorated Dynamic Control
    Lu, Ming-Chi
    Tseng, Yen-Wen
    Zhong, Yan-Lin
    Chan, Chen-An
    Chiu, Che-An
    Huang, Wen-, I
    Liu, Chia-Ju
    Ho, Ming-Chung
    SENSORS AND MATERIALS, 2022, 34 (03) : 1211 - 1219
  • [38] Sampled-data synchronization control for chaotic neural networks subject to actuator saturation
    Zeng, Hong-Bing
    Teo, Kok Lay
    He, Yong
    Xu, Honglei
    Wang, Wei
    NEUROCOMPUTING, 2017, 260 : 25 - 31
  • [39] Quantized Control for Local Synchronization of Fractional-Order Neural Networks with Actuator Saturation
    Fan, Shuxian
    Li, Meixuan
    AXIOMS, 2023, 12 (09)
  • [40] Anti-Synchronization Control for Memristor-Based Recurrent Neural Networks
    Li, Ning
    Cao, Jinde
    Zhou, Mengzhe
    ADVANCES IN NEURAL NETWORKS - ISNN 2014, 2014, 8866 : 27 - 34