Minimum cutsets in hypercubes

被引:8
|
作者
Ramras, M [1 ]
机构
[1] Northeastern Univ, Dept Math, Boston, MA 02115 USA
关键词
hypercube; separating set; edge cut; connectivity; diameter;
D O I
10.1016/j.disc.2004.08.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A local cut at a vertex v is a set consisting of, for each neighbor x of v, the vertex x or the edge nux. We prove that the local cuts are the smallest sets of vertices and/or edges whose deletion disconnects the k-dimensional hypercube Q(k). We also characterize the smallest sets of vertices and/or edges whose deletion produces a graph with larger diameter than Q(k). These are the sets consisting of k - 1 elements from a local cut. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:193 / 198
页数:6
相关论文
共 50 条
  • [21] An efficient network flow code for finding all minimum cost s-t cutsets
    Curet, ND
    DeVinney, J
    Gaston, ME
    COMPUTERS & OPERATIONS RESEARCH, 2002, 29 (03) : 205 - 219
  • [22] ANTICHAIN CUTSETS
    RIVAL, I
    ZAGUIA, N
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1985, 1 (03): : 235 - 247
  • [23] Galaxy cutsets in graphs
    Sonnerat, Nicolas
    Vetta, Adrian
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2010, 19 (03) : 415 - 427
  • [24] Counting hypercubes in hypercubes
    Klavzar, Sandi
    DISCRETE MATHEMATICS, 2006, 306 (22) : 2964 - 2967
  • [25] Optimally adaptive, minimum-distance, circuit-switched routing in hypercubes
    Mahmood, A
    Lynch, DJ
    Shaffer, RB
    ACM TRANSACTIONS ON COMPUTER SYSTEMS, 1997, 15 (02): : 166 - 193
  • [26] Galaxy cutsets in graphs
    Nicolas Sonnerat
    Adrian Vetta
    Journal of Combinatorial Optimization, 2010, 19 : 415 - 427
  • [27] CUTSETS OF BOOLEAN LATTICES
    NOWAKOWSKI, R
    DISCRETE MATHEMATICS, 1987, 63 (2-3) : 231 - 240
  • [28] On stable cutsets in graphs
    Brandstädt, A
    Dragan, FF
    Le, VB
    Szymczak, T
    DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) : 39 - 50
  • [29] ON COMPLEMENTATION OF PATHSETS AND CUTSETS
    RAI, S
    AGGARWAL, KK
    IEEE TRANSACTIONS ON RELIABILITY, 1980, 29 (02) : 139 - 140
  • [30] Finite Antichain Cutsets in Posets
    李伯渝
    Acta Mathematica Sinica,English Series, 1991, (01) : 51 - 61