In this article we study modular invariants of finite groups using as tools, the Steenrod algebra and the Dickson algebra. The ring of invariants of a finite group over the field F-p of p elements is an unstable algebra over the Steenrod algebra. We extend this to arbitrary Galois fields and exploit this extra structure to study the transfer map Tr(G) : F[V] --> F[V](G). The case G = GL(n, F-q) is a universal example in the sense that classes in Im(Tr(GL(n, Fq))) lie in Im(Tr(G)) for any rho : G hooked right arrow GL(n, F-q). We will show that the radical of the ideal Im(Tr(GL(n, Fq))) is the principal ideal generated by the top Dickson class d(n, 0), a result first proved by M. Feshbach for the prime 2.
机构:
Nagoya Univ, Grad Sch Math, Chikusa Ku, Furocho, Nagoya, Aichi 4648602, JapanNagoya Univ, Grad Sch Math, Chikusa Ku, Furocho, Nagoya, Aichi 4648602, Japan
机构:
Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, IT-16146 Genoa, ItalyUniv Genoa, Dipartimento Matemat, Via Dodecaneso 35, IT-16146 Genoa, Italy
De Negri, Emanuela
Gorla, Elisa
论文数: 0引用数: 0
h-index: 0
机构:
Univ Basel, Dept Math, CH-4051 Basel, SwitzerlandUniv Genoa, Dipartimento Matemat, Via Dodecaneso 35, IT-16146 Genoa, Italy
Gorla, Elisa
COMMUTATIVE ALGEBRA AND ITS CONNECTIONS TO GEOMETRY,
2011,
555
: 47
-
+