P*-invariant ideals in rings of invariants

被引:11
|
作者
Smith, L
机构
[1] Mathematisches Institut der Universität Göttingen, Göttingen, Bunsenstrasse 3-5
关键词
D O I
10.1515/form.1996.8.319
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study modular invariants of finite groups using as tools, the Steenrod algebra and the Dickson algebra. The ring of invariants of a finite group over the field F-p of p elements is an unstable algebra over the Steenrod algebra. We extend this to arbitrary Galois fields and exploit this extra structure to study the transfer map Tr(G) : F[V] --> F[V](G). The case G = GL(n, F-q) is a universal example in the sense that classes in Im(Tr(GL(n, Fq))) lie in Im(Tr(G)) for any rho : G hooked right arrow GL(n, F-q). We will show that the radical of the ideal Im(Tr(GL(n, Fq))) is the principal ideal generated by the top Dickson class d(n, 0), a result first proved by M. Feshbach for the prime 2.
引用
收藏
页码:319 / 342
页数:24
相关论文
共 50 条