Day-ahead load forecasting using improved grey Verhulst model

被引:8
|
作者
Mbae, Ariel Mutegi [1 ]
Nwulu, Nnamdi, I [2 ]
机构
[1] Univ Johannesburg, Fac Engn & Built Environm, Dept Elect & Elect Engn Sci, Johannesburg, South Africa
[2] Univ Johannesburg, Dept Elect & Elect Engn Sci, Johannesburg, South Africa
关键词
Forecast; Optimal; Ancillary; Economic dispatch; MAPE; System security; ELECTRICITY CONSUMPTION; SYSTEM; POWER;
D O I
10.1108/JEDT-12-2019-0337
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Purpose In the daily energy dispatch process in a power system, accurate short-term electricity load forecasting is a very important tool used by spot market players. It is a critical requirement for optimal generator unit commitment, economic dispatch, system security and stability assessment, contingency and ancillary services management, reserve setting, demand side management, system maintenance and financial planning in power systems. The purpose of this study is to present an improved grey Verhulst electricity load forecasting model. Design/methodology/approach To test the effectiveness of the proposed model for short-term load forecast, studies made use of Kenya's load demand data for the period from January 2014 to June 2019. Findings The convectional grey Verhulst forecasting model yielded a mean absolute percentage error of 7.82 per cent, whereas the improved model yielded much better results with an error of 2.96 per cent. Practical implications In the daily energy dispatch process in a power system, accurate short-term load forecasting is a very important tool used by spot market players. It is a critical ingredient for optimal generator unit commitment, economic dispatch, system security and stability assessment, contingency and ancillary services management, reserve setting, demand side management, system maintenance and financial planning in power systems. The fact that the model uses actual Kenya's utility data confirms its usefulness in the practical world for both economic planning and policy matters. Social implications In terms of generation and transmission investments, proper load forecasting will enable utilities to make economically viable decisions. It forms a critical cog of the strategic plans for power utilities and other market players to avoid a situation of heavy stranded investment that adversely impact the final electricity prices and the other extreme scenario of expensive power shortages. Originality/value This research combined the use of natural logarithm and the exponential weighted moving average to improve the forecast accuracy of the grey Verhulst forecasting model.
引用
收藏
页码:1335 / 1348
页数:14
相关论文
共 50 条
  • [21] A hybrid model for integrated day-ahead electricity price and load forecasting in smart grid
    Wu, Lei
    Shahidehpour, Mohammad
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2014, 8 (12) : 1937 - 1950
  • [22] Forecasting Day-ahead Electricity Prices with A SARIMAX Model
    McHugh, Catherine
    Coleman, Sonya
    Kerr, Dermot
    McGlynn, Daniel
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 1523 - 1529
  • [23] Forecasting day-ahead electricity load using a multiple equation time series approach
    Clements, A. E.
    Hurn, A. S.
    Li, Z.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 251 (02) : 522 - 530
  • [24] Clustering based day-ahead and hour-ahead bus load forecasting models
    Panapakidis, Ioannis P.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2016, 80 : 171 - 178
  • [25] Day-Ahead Electricity Market Forecasting using Kernels
    Kekatos, Vassilis
    Veeramachaneni, Sriharsha
    Light, Marc
    Giannakis, Georgios B.
    2013 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES (ISGT), 2013,
  • [26] Simultaneous day-ahead forecasting of electricity price and load in smart grids
    Shayeghi, H.
    Ghasemi, A.
    Moradzadeh, M.
    Nooshyar, M.
    ENERGY CONVERSION AND MANAGEMENT, 2015, 95 : 371 - 384
  • [27] Comparison of Three Methods for a Weather Based Day-Ahead Load Forecasting
    Zou, Mingzhe
    Gu, Jiachen
    Fang, Duo
    Harrison, Gareth
    Djokic, Sasa
    Wang, Xinying
    Zhang, Chen
    PROCEEDINGS OF 2019 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE), 2019,
  • [28] The impact of heat pumps on day-ahead energy community load forecasting
    Semmelmann, Leo
    Hertel, Matthias
    Kircher, Kevin J.
    Mikut, Ralf
    Hagenmeyer, Veit
    Weinhardt, Christof
    APPLIED ENERGY, 2024, 368
  • [29] Combination model for day-ahead solar forecasting using local and global model input
    Song, Guiting
    Huva, Robert
    Zhao, Yangyang
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2022, 14 (03)
  • [30] Day-ahead electricity price forecasting using WT, CLSSVM and EGARCH model
    Zhang, Jinliang
    Tan, Zhongfu
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2013, 45 (01) : 362 - 368