Coupled thermoviscoelastodynamic Green's functions for bi-material half-space

被引:16
|
作者
Naeeni, M. Raoofian [1 ]
Eskandari-Ghadi, M. [2 ]
Ardalan, A. A. [1 ]
Pak, R. Y. S. [3 ]
Rahimian, M. [2 ]
Hayati, Y. [2 ]
机构
[1] Univ Tehran, Coll Engn, Ctr Excellence Geomat Engn & Disaster Prevent, Dept Surveying & Geomat Engn, Tehran 111554563, Iran
[2] Univ Tehran, Coll Engn, Sch Civil Engn, Tehran 111554563, Iran
[3] Univ Colorado, Dept Civil Environm & Architectural Engn, Boulder, CO 80309 USA
关键词
Coupled thermoelasticity; bi-material half-space; transversely isotropic; potential function; Hankel integral transforms; thermoviscoelasticity; DEFORMATION; DISPLACEMENT; INTEGRATION; STRESSES;
D O I
10.1002/zamm.201200135
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By virtue of the representations of displacements, stresses, and temperature fields in terms of two scalar potential functions and the use of correspondence principle, an analytical derivation of fundamental Green's functions for bi-material half-space composed of a transversely isotropic thermo-elastic layer and an isotropic thermo-visco-elastic half-space affected by finite surface or interfacial sources is presented. With the aid of the potential function relationships, the coupled equations of motion and energy equation in both the half-space and the layer are uncoupled and solved with the aid of Fourier series and Hankel integral transforms. Responses of the medium are derived in the form of improper line integrals related to Hankel inversion transforms. To show the effects of anisotropy and viscoelasticity on the propagation of coupled thermoviscoelastic waves, the derived integrals for displacements, stresses, and temperature Green's functions are evaluated by a numerical scheme. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:260 / 282
页数:23
相关论文
共 50 条
  • [1] Image force in cubic piezoelectric quasicrystal half-space and bi-material composite space
    Mu, Xiang
    Xu, Wenshuai
    Zhu, Zhaowei
    Zhang, Liangliang
    Gao, Yang
    ACTA MECHANICA, 2023, 234 (11) : 5331 - 5347
  • [2] Image force in cubic piezoelectric quasicrystal half-space and bi-material composite space
    Xiang Mu
    Wenshuai Xu
    Zhaowei Zhu
    Liangliang Zhang
    Yang Gao
    Acta Mechanica, 2023, 234 : 5331 - 5347
  • [3] Dynamic Green’s functions for a poroelastic half-space
    Pei Zheng
    She-Xu Zhao
    Ding Ding
    Acta Mechanica, 2013, 224 : 17 - 39
  • [4] Dynamic Green's functions for a poroelastic half-space
    Zheng, Pei
    Zhao, She-Xu
    Ding, Ding
    ACTA MECHANICA, 2013, 224 (01) : 17 - 39
  • [5] Dynamic Reissner-Sagoci Problem for a Transversely-Isotropic Bi-Material Half-Space
    Yaghmaie, Reza
    Asgari, Hamidreza
    GEO-CHINA 2016: INNOVATIVE AND SUSTAINABLE USE OF GEOMATERIALS AND GEOSYSTEMS, 2016, (263): : 17 - 24
  • [6] SCATTERING OF SH-WAVE BY CYLINDRICAL INCLUSION NEAR INTERFACE IN BI-MATERIAL HALF-SPACE
    Qi, H.
    Yang, J.
    Shi, Y.
    JOURNAL OF MECHANICS, 2011, 27 (01) : 37 - 45
  • [7] Scattering of SH-wave by the circular lining with an interface crack in a bi-material half-space
    Qi, Hui
    Zhang, Gen-Chang
    Chen, Dong-Ni
    Guo, Jing
    Zhao, Chun-Xiang
    Baozha Yu Chongji/Explosion and Shock Waves, 2012, 32 (05): : 463 - 469
  • [8] Generalized Surface Green's Functions for an Elastic Half-Space
    Zemskov, A. V.
    Tarlakovskii, D. V.
    RUSSIAN MATHEMATICS, 2023, 67 (04) : 22 - 30
  • [9] Dynamic Green's functions for an anisotropic poroelastic half-space
    Wang, Fang
    Ding, Tao
    Han, Xueli
    Lv, Lei
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2020, 44 (06) : 904 - 920
  • [10] Green's functions for a volume source in an elastic half-space
    Zabolotskaya, Evgenia A.
    Ilinskii, Yurii A.
    Hay, Todd A.
    Hamilton, Mark F.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2012, 131 (03): : 1831 - 1842