Deep-learning-based Segmentation of Skeletal Muscle Mass in Routine Abdominal CT Scans

被引:6
|
作者
Kreher, Robert [1 ,2 ]
Hinnerichs, Mattes [3 ]
Preim, Bernhard [1 ,2 ]
Saalfeld, Sylvia [1 ,2 ]
Surov, Alexey [3 ]
机构
[1] Univ Magdeburg, Dept Simulat & Graph, Magdeburg, Germany
[2] Res Campus STIMULATE, Magdeburg, Germany
[3] Univ Hosp, Dept Radiol, Magdeburg, Germany
来源
IN VIVO | 2022年 / 36卷 / 04期
关键词
Key Words; Skeletal muscle mass; deep-learning segmentation; sarcopenia; SARCOPENIA;
D O I
10.21873/invivo.12896
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background: For prediction of many types of clinical outcome, the skeletal muscle mass can be used as an independent biomarker. Manual segmentation of the skeletal muscles is time-consuming, therefore we present a deeplearning-based approach for the identification of muscle mass at the L3 level in clinical routine computed tomographic (CT) data. Patients and Methods: We conducted a retrospective study of 130 patient datasets. Individual CT slice analysis at the L3 level was fed into a U-Net architecture. As a result, we obtained segmentations of the musculus rectus abdominis, abdominal wall muscles, musculus psoas major, musculus quadratus lumborum and musculus erector spinae in the CTslice at the L3 level. Results: The Dice score was 0.95??0.02, 0.86??0.12, 0.93??0.05, 0.92??0.05, 0.86??0.08 for the erector spine, rectus, abdominal wall, psoas and quadratus lumborum muscles, respectively. For the overall skeletal muscle mass, the test data achieved a Dice score of 0.95??0.03. Conclusion: Our network achieved Dice scores larger than 0.86 for each of the five different muscle types and 0.95 for the overall skeletal muscle mass. The subdivision of muscle types can serve as a basis for obtaining future biomarkers. Our network is publicly available so that it might be beneficial for others to improve the clinical workflow within examination of routine CT scans.
引用
收藏
页码:1807 / 1811
页数:5
相关论文
共 50 条
  • [31] Deep Learning-based Auto-segmentation on CT and MRI for Abdominal Structures
    Amjad, A.
    Xu, J.
    Thill, D.
    O'Connell, N.
    Buchanan, L.
    Jones, I. K.
    Hall, W. A.
    Erickson, B. A.
    Li, A.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : S100 - S101
  • [32] Robust Deep Learning-based Segmentation of Glioblastoma on Routine Clinical MRI Scans Using Sparsified Training
    Eijgelaar, Roelant S.
    Visser, Martin
    Muller, Domenique M. J.
    Barkhof, Frederik
    Vrenken, Hugo
    van Herk, Marcel
    Bello, Lorenzo
    Nibali, Marco Conti
    Rossi, Marco
    Sciortino, Tommaso
    Berger, Mitchel S.
    Hervey-Jumper, Shawn
    Kiesel, Barbara
    Widhalm, Georg
    Furtner, Julia
    Robe, Pierre A. J. T.
    Mandonnet, Emmanuel
    Hamer, Philip C. De Witt
    de Munck, Jan C.
    Witte, Marnix G.
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2020, 2 (05) : 1 - 9
  • [33] A segmentation framework for abdominal organs from CT scans
    Campadelli, Paola
    Casiraghi, Elena
    Pratissoli, Stella
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2010, 50 (01) : 3 - 11
  • [34] Deep learning-based muscle segmentation and quantification at abdominal CT: application to a longitudinal adult screening cohort for sarcopenia assessment
    Graffy, Peter M.
    Liu, Jiamin
    Pickhardt, Perry J.
    Burns, Joseph E.
    Yao, Jianhua
    Summers, Ronald M.
    BRITISH JOURNAL OF RADIOLOGY, 2019, 92 (1100):
  • [35] Automated Segmentation of Lymph Nodes on Neck CT Scans Using Deep Learning
    Al Hasan, Md Mahfuz
    Ghazimoghadam, Saba
    Tunlayadechanont, Padcha
    Mostafiz, Mohammed Tahsin
    Gupta, Manas
    Roy, Antika
    Peters, Keith
    Hochhegger, Bruno
    Mancuso, Anthony
    Asadizanjani, Navid
    Forghani, Reza
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, : 2955 - 2966
  • [36] Automatic segmentation of abdominal organs from CT scans
    Campadelli, Paola
    Casiraghi, Elena
    Pratissoli, Stella
    19TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, VOL I, PROCEEDINGS, 2007, : 513 - 516
  • [37] Automatic liver segmentation from abdominal CT scans
    Campadelli, Paola
    Casiraghi, Elena
    Lombardi, Gabriele
    14TH INTERNATIONAL CONFERENCE ON IMAGE ANALYSIS AND PROCESSING, PROCEEDINGS, 2007, : 731 - +
  • [38] Intensity-Based Thresholding of Probability Maps in Deep-Learning-Based Segmentation
    Bice, N.
    Kirby, N.
    Li, R.
    Bahr, T.
    Rembish, J.
    Agarwal, M.
    Stathakis, S.
    Fakhreddine, M.
    MEDICAL PHYSICS, 2020, 47 (06) : E302 - E302
  • [39] MRISNet:Deep-learning-based Martian instance segmentation against blur
    Liu, Meng
    Liu, Jin
    Ma, Xin
    EARTH SCIENCE INFORMATICS, 2023, 16 (01) : 965 - 981
  • [40] MRISNet:Deep-learning-based Martian instance segmentation against blur
    Meng Liu
    Jin Liu
    Xin Ma
    Earth Science Informatics, 2023, 16 : 965 - 981