Deformable density matching for 3D non-rigid registration of shapes

被引:0
|
作者
Roy, Arunabha S. [1 ]
Gopinath, Ajay [1 ]
Rangarajan, Anand [2 ]
机构
[1] GE Global Res Ctr, Imaging Technol Lab, Bangalore, Karnataka, India
[2] Univ Florida, Dept CISE, Gainesville, FL USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
There exists a large body of literature on shape matching and registration in medical image analysis. However, most of the previous work is focused on matching particular sets of features-point-sets, lines, curves and surfaces. In this work, we forsake specific geometric shape representations and instead seek probabilistic representations-specifically Gaussian mixture models-of shapes. We evaluate a closed-form distance between two probabilistic shape representations for the general case where the mixture models differ in variance and the number of components. We then cast non-rigid registration as a deformable density matching problem. In our approach, we take one mixture density onto another by deforming the component centroids via a thin-plate spline (TPS) and also minimizing the distance with respect to the variance parameters. We validate our approach on synthetic and 3D arterial tree data and evaluate it on 3D hippocampal shapes.
引用
收藏
页码:942 / +
页数:2
相关论文
共 50 条
  • [21] Non-rigid 3D Shape Registration Using an Adaptive Template
    Dai, Hang
    Pears, Nick
    Smith, William
    [J]. COMPUTER VISION - ECCV 2018 WORKSHOPS, PT IV, 2019, 11132 : 48 - 63
  • [22] Robust Non-Rigid Registration of 2D and 3D Graphs
    Serradell, Eduard
    Glowacki, Przemyslaw
    Kybic, Jan
    Moreno-Noguer, Francesc
    Fua, Pascal
    [J]. 2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 996 - 1003
  • [23] Evaluation of sampling method effects in 3D non-rigid registration
    Saval-Calvo, Marcelo
    Azorin-Lopez, Jorge
    Fuster-Guillo, Andres
    Garcia-Rodriguez, Jose
    Orts-Escolano, Sergio
    Garcia-Garcia, Alberto
    [J]. NEURAL COMPUTING & APPLICATIONS, 2017, 28 (05): : 953 - 967
  • [24] Evaluation of sampling method effects in 3D non-rigid registration
    Marcelo Saval-Calvo
    Jorge Azorin-Lopez
    Andres Fuster-Guillo
    Jose Garcia-Rodriguez
    Sergio Orts-Escolano
    Alberto Garcia-Garcia
    [J]. Neural Computing and Applications, 2017, 28 : 953 - 967
  • [25] ACCELERATING 3D NON-RIGID REGISTRATION USING GRAPHICS HARDWARE
    Courty, Nicolas
    Hellier, Pierre
    [J]. INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2008, 8 (01) : 81 - 98
  • [26] An improved 3D shape context registration method for non-rigid surface registration
    Xiao, Di
    Zahra, David
    Bourgeat, Pierrick
    Berghofer, Paula
    Tamayo, Oscar Acosta
    Wimberley, Catriona
    Gregoire, Marie Claude
    Salvado, Olivier
    [J]. MEDICAL IMAGING 2010: IMAGE PROCESSING, 2010, 7623
  • [27] A Novel Canonical Form for the Registration of Non Rigid 3D Shapes
    Jribi, Majdi
    Ghorbel, Faouzi
    [J]. COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2015, PT II, 2015, 9257 : 230 - 241
  • [28] Learning 3D Keypoint Descriptors for Non-rigid Shape Matching
    Wang, Hanyu
    Guo, Jianwei
    Yan, Dong-Ming
    Quan, Weize
    Zhang, Xiaopeng
    [J]. COMPUTER VISION - ECCV 2018, PT VIII, 2018, 11212 : 3 - 20
  • [29] 3D Non-Rigid Deformable Surface Estimation Without Feature Correspondence
    Willimon, Bryan
    Walker, Ian
    Birchfield, Stan
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 646 - 651
  • [30] Non-rigid 3D models retrieval based on hierarchical matching
    Liu Yujie
    Li Wei
    Song Yang
    Gong Weiqing
    Li Zongmin
    Li Hua
    [J]. CADDM, 2017, (01) : 39 - 47