Efficient Hermite Spectral-Galerkin Methods for Nonlocal Diffusion Equations in Unbounded Domains

被引:5
|
作者
Li, Huiyuan [1 ]
Liu, Ruiqing [1 ,2 ]
Wang, Li-Lian [3 ]
机构
[1] Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Lab Parallel Comp, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
[3] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
基金
中国国家自然科学基金;
关键词
Nonlocal diffusion equation; spectral-Galerkin; Hermite functions; correlation/convolution; recurrence algorithm; FRACTIONAL LAPLACIAN; PDES; APPROXIMATIONS;
D O I
10.4208/nmtma.OA-2022-0007s
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop an efficient Hermite spectral-Galerkin method for nonlocal diffusion equations in unbounded domains. We show that the use of the Hermite basis can de-convolute the troublesome convolutional operations involved in the nonlocal Laplacian. As a result, the "stiffness" matrix can be fast computed and assembled via the four-point stable recursive algorithm with O(N-2) arithmetic operations. Moreover, the singular factor in a typical kernel function can be fully absorbed by the basis. With the aid of Fourier analysis, we can prove the convergence of the scheme. We demonstrate that the recursive computation of the entries of the stiffness matrix can be extended to the two-dimensional nonlocal Laplacian using the isotropic Hermite functions as basis functions. We provide ample numerical results to illustrate the accuracy and efficiency of the proposed algorithms.
引用
收藏
页码:1009 / 1040
页数:32
相关论文
共 50 条
  • [11] Hermite spectral methods with a time-dependent scaling for parabolic equations in unbounded domains
    Ma, HP
    Sun, WW
    Tang, T
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (01) : 58 - 75
  • [12] MULTILEVEL SPECTRAL-GALERKIN AND CONTINUATION METHODS FOR NONLINEAR SCHRODINGER EQUATIONS
    Chen, H. -S.
    Chien, C. -S.
    [J]. MULTISCALE MODELING & SIMULATION, 2009, 8 (02): : 370 - 392
  • [13] Efficient spectral-Galerkin methods IV. Spherical geometries
    Shen, J
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (04): : 1438 - 1455
  • [14] FAST FOURIER-LIKE MAPPED CHEBYSHEV SPECTRAL-GALERKIN METHODS FOR PDES WITH INTEGRAL FRACTIONAL LAPLACIAN IN UNBOUNDED DOMAINS
    Sheng, Changtao
    Shen, Jie
    Tang, Tao
    Wang, Li-Lian
    Yuan, Huifang
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (05) : 2435 - 2464
  • [15] Hermite Spectral Collocation Methods for Fractional PDEs in Unbounded Domains
    Tang, Tao
    Yuan, Huifang
    Zhou, Tao
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 24 (04) : 1143 - 1168
  • [16] Efficient Hermite Spectral Methods for Space Tempered Fractional Diffusion Equations
    Cui, Tengteng
    Chen, Sheng
    Jiao, Yujian
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2021, 11 (01) : 43 - 62
  • [17] Efficient spectral-Galerkin methods .3. Polar and cylindrical geometries
    Shen, J
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (06): : 1583 - 1604
  • [18] Efficient Spectral-Galerkin Method for eigenvalue problems
    Jun, Zhang
    Fan Xinyue
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND SERVICE SYSTEM (CSSS), 2014, 109 : 102 - 106
  • [19] An efficient spectral-Galerkin method for solving two-dimensional nonlinear system of advection–diffusion–reaction equations
    Farhad Fakhar-Izadi
    [J]. Engineering with Computers, 2021, 37 : 975 - 990
  • [20] Semi-implicit Hermite–Galerkin Spectral Method for Distributed-Order Fractional-in-Space Nonlinear Reaction–Diffusion Equations in Multidimensional Unbounded Domains
    Shimin Guo
    Liquan Mei
    Can Li
    Zhengqiang Zhang
    Ying Li
    [J]. Journal of Scientific Computing, 2020, 85