Polarons in Metal Halide Perovskites

被引:102
|
作者
Meggiolaro, Daniele [1 ,2 ]
Ambrosio, Francesco [1 ,2 ]
Mosconi, Edoardo [1 ]
Mahata, Arup [1 ,2 ]
De Angelis, Filippo [1 ,3 ]
机构
[1] Ist CNR Sci & Tecnol Chim Giulio Natta CNRS SCITE, Computat Lab Hybrid Organ Photovolta CLHYO, Via Elce Sotto 8, I-06123 Perugia, Italy
[2] Ist Italiano Tecnol, CompuNet, Via Morego 30, I-16163 Genoa, Italy
[3] Univ Perugia, Dept Chem Biol & Biotechnol, Via Elce Sotto 8, I-06123 Perugia, Italy
关键词
cations disorder; large Polarons; metal-halide perovskites; perovskites solar cells; polarons modelling; polarons mobility; LEAD IODIDE PEROVSKITES; ELECTRON-HOLE RECOMBINATION; DENSITY-FUNCTIONAL CALCULATIONS; CHARGE-CARRIER MOBILITIES; EXCITON BINDING-ENERGY; BAND-GAP; HYBRID PEROVSKITES; RADIATIVE RECOMBINATION; INORGANIC PEROVSKITES; PHASE-TRANSITIONS;
D O I
10.1002/aenm.201902748
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The peculiar optoelectronic properties of metal-halide perovskites, partly underlying their success in solar cells and light emitting devices, are likely related to the complex interplay of electronic and structural features mediated by formation of polarons. In this paper the current status of polaron physics in metal-halide perovskites is reviewed based on a first-principles computational perspective, which has delivered hitherto noaccessible insights into the electronic and structural features associated with polaron formation in this materials class. The role of organic (dipolar) versus inorganic (spherical) A-site cations is extensively analyzed, these cations are related to modulation of the energetics and structural extension of polarons in lead-halide perovskites. Further tuning of polaron energetics is achieved by individual variations in metal (e.g., Pb -> Sn) and halide (e.g., I -> Br), showing a transition from a semilocalized to a localized polaron regime in which charge holes can be trapped at isolated Sn centers. The vastly varying and tunable nature of charge lattice interactions represents a peculiarity of metal-halide perovskites that should be taken into account when designing novel materials or targeting specific compositional engineering of existing perovskites.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Oxidative Passivation of Metal Halide Perovskites
    Godding, Julian S. W.
    Ramadan, Alexandra J.
    Lin, Yen-Hung
    Schutt, Kelly
    Snaith, Henry J.
    Wenger, Bernard
    JOULE, 2019, 3 (11) : 2716 - 2731
  • [32] Excitons in Metal-Halide Perovskites
    Baranowski, Michal
    Plochocka, Paulina
    ADVANCED ENERGY MATERIALS, 2020, 10 (26)
  • [33] Blue electroluminescent metal halide perovskites
    Kumar, Sudhir
    Shih, Chih-Jen
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (12)
  • [34] Laser Deposition of Metal Halide Perovskites
    Soto-Montero, Tatiana
    Morales-Masis, Monica
    ACS ENERGY LETTERS, 2024, 9 (08): : 4199 - 4208
  • [35] Physics of defects in metal halide perovskites
    Bao, Chunxiong
    Gao, Feng
    REPORTS ON PROGRESS IN PHYSICS, 2022, 85 (09)
  • [36] Metal halide perovskites under compression
    Li, Qian
    Zhang, Liming
    Chen, Zhongwei
    Quan, Zewei
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (27) : 16089 - 16108
  • [37] Mirrors of Bonding in Metal Halide Perovskites
    Goesten, Maarten G.
    Hoffmann, Roald
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (40) : 12996 - 13010
  • [38] Metal halide perovskites for energy applications
    Zhang, Wei
    Eperon, Giles E.
    Snaith, Henry J.
    NATURE ENERGY, 2016, 1
  • [39] Dimensionality engineering of metal halide perovskites
    Rashad F.KAHWAGI
    Sean T.THORNTON
    Ben SMITH
    Ghada I.KOLEILAT
    Frontiers of Optoelectronics, 2020, 13 (03) : 196 - 224
  • [40] Solvated Electrons in Solids-Ferroelectric Large Polarons in Lead Halide Perovskites
    Wang, Feifan
    Fu, Yongping
    Ziffer, Mark E.
    Dai, Yanan
    Maehrlein, Sebastian F.
    Zhu, X-Y
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (01) : 5 - 16