Dynamic principal component CAW models for high-dimensional realized covariance matrices

被引:2
|
作者
Gribisch, Bastian [1 ]
Stollenwerk, Michael [2 ]
机构
[1] Univ Cologne, Inst Econometr & Stat, Univ Str 22a, D-50937 Cologne, Germany
[2] Heidelberg Univ, Alfred Weber Inst Econ, Heidelberg, Germany
关键词
Realized volatility; Covariance matrix; Spectral decomposition; Time-series models; ECONOMETRIC-ANALYSIS; LONG-MEMORY; MULTIVARIATE; VOLATILITY; REGRESSION;
D O I
10.1080/14697688.2019.1701197
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We propose a new dynamic principal component CAW model (DPC-CAW) for time-series of high-dimensional realized covariance matrices of asset returns (up to 100 assets). The model performs a spectral decomposition of the scale matrix of a central Wishart distribution and assumes independent dynamics for the principal components' variances and the eigenvector processes. A three-step estimation procedure makes the model applicable to high-dimensional covariance matrices. We analyze the finite sample properties of the estimation approach and provide an empirical application to realized covariance matrices for 100 assets. The DPC-CAW model has particularly good forecasting properties and outperforms its competitors for realized covariance matrices.
引用
收藏
页码:799 / 821
页数:23
相关论文
共 50 条
  • [21] Projection tests for high-dimensional spiked covariance matrices
    Guo, Wenwen
    Cui, Hengjian
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 169 : 21 - 32
  • [22] Element Aggregation for Estimation of High-Dimensional Covariance Matrices
    Yang, Jingying
    [J]. MATHEMATICS, 2024, 12 (07)
  • [23] Hypothesis testing for the identity of high-dimensional covariance matrices
    Qian, Manling
    Tao, Li
    Li, Erqian
    Tian, Maozai
    [J]. STATISTICS & PROBABILITY LETTERS, 2020, 161
  • [24] Testing the equality of multiple high-dimensional covariance matrices
    Shen J.
    [J]. Results in Applied Mathematics, 2022, 15
  • [25] TWO SAMPLE TESTS FOR HIGH-DIMENSIONAL COVARIANCE MATRICES
    Li, Jun
    Chen, Song Xi
    [J]. ANNALS OF STATISTICS, 2012, 40 (02): : 908 - 940
  • [26] Robust Shrinkage Estimation of High-Dimensional Covariance Matrices
    Chen, Yilun
    Wiesel, Ami
    Hero, Alfred O., III
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (09) : 4097 - 4107
  • [27] ADAPTIVE TESTS FOR BANDEDNESS OF HIGH-DIMENSIONAL COVARIANCE MATRICES
    Wang, Xiaoyi
    Xu, Gongjun
    Zheng, Shurong
    [J]. STATISTICA SINICA, 2023, 33 : 1673 - 1696
  • [28] Testing proportionality of two high-dimensional covariance matrices
    Cheng, Guanghui
    Liu, Baisen
    Tian, Guoliang
    Zheng, Shurong
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 150
  • [29] Group Lasso Estimation of High-dimensional Covariance Matrices
    Bigot, Jeremie
    Biscay, Rolando J.
    Loubes, Jean-Michel
    Muniz-Alvarez, Lilian
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 3187 - 3225
  • [30] On principal component analysis for high-dimensional XCSR
    Behdad, Mohammad
    French, Tim
    Barone, Luigi
    Bennamoun, Mohammed
    [J]. EVOLUTIONARY INTELLIGENCE, 2012, 5 (02) : 129 - 138