Dynamic principal component CAW models for high-dimensional realized covariance matrices

被引:2
|
作者
Gribisch, Bastian [1 ]
Stollenwerk, Michael [2 ]
机构
[1] Univ Cologne, Inst Econometr & Stat, Univ Str 22a, D-50937 Cologne, Germany
[2] Heidelberg Univ, Alfred Weber Inst Econ, Heidelberg, Germany
关键词
Realized volatility; Covariance matrix; Spectral decomposition; Time-series models; ECONOMETRIC-ANALYSIS; LONG-MEMORY; MULTIVARIATE; VOLATILITY; REGRESSION;
D O I
10.1080/14697688.2019.1701197
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We propose a new dynamic principal component CAW model (DPC-CAW) for time-series of high-dimensional realized covariance matrices of asset returns (up to 100 assets). The model performs a spectral decomposition of the scale matrix of a central Wishart distribution and assumes independent dynamics for the principal components' variances and the eigenvector processes. A three-step estimation procedure makes the model applicable to high-dimensional covariance matrices. We analyze the finite sample properties of the estimation approach and provide an empirical application to realized covariance matrices for 100 assets. The DPC-CAW model has particularly good forecasting properties and outperforms its competitors for realized covariance matrices.
引用
收藏
页码:799 / 821
页数:23
相关论文
共 50 条
  • [1] Forecasting High-Dimensional Covariance Matrices Using High-Dimensional Principal Component Analysis
    Shigemoto, Hideto
    Morimoto, Takayuki
    [J]. AXIOMS, 2022, 11 (12)
  • [2] Factor state-space models for high-dimensional realized covariance matrices of asset returns
    Gribisch, Bastian
    Hartkopf, Jan Patrick
    Liesenfeld, Roman
    [J]. JOURNAL OF EMPIRICAL FINANCE, 2020, 55 : 1 - 20
  • [3] A Class of Structured High-Dimensional Dynamic Covariance Matrices
    Yang, Jin
    Lian, Heng
    Zhang, Wenyang
    [J]. COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2023,
  • [4] High-Dimensional Dynamic Covariance Matrices With Homogeneous Structure
    Ke, Yuan
    Lian, Heng
    Zhang, Wenyang
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (01) : 96 - 110
  • [5] HIGH-DIMENSIONAL COVARIANCE MATRICES UNDER DYNAMIC VOLATILITY MODELS: ASYMPTOTICS AND SHRINKAGE ESTIMATION
    Ding, Yi
    Zheng, Xinghua
    [J]. ANNALS OF STATISTICS, 2024, 52 (03): : 1027 - 1049
  • [6] Tests for High-Dimensional Covariance Matrices
    Chen, Song Xi
    Zhang, Li-Xin
    Zhong, Ping-Shou
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (490) : 810 - 819
  • [7] Tests for high-dimensional covariance matrices
    Chen, Jing
    Wang, Xiaoyi
    Zheng, Shurong
    Liu, Baisen
    Shi, Ning-Zhong
    [J]. RANDOM MATRICES-THEORY AND APPLICATIONS, 2020, 9 (03)
  • [8] High-dimensional realized covariance estimation: a parametric approach
    Buccheri, G.
    Anga, G. Mboussa
    [J]. QUANTITATIVE FINANCE, 2022, 22 (11) : 2093 - 2107
  • [9] Principal regression for high dimensional covariance matrices
    Zhao, Yi
    Caffo, Brian
    Luo, Xi
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 4192 - 4235
  • [10] A note on tests for high-dimensional covariance matrices
    Mao, Guangyu
    [J]. STATISTICS & PROBABILITY LETTERS, 2016, 117 : 89 - 92