Suppression of electrochemical decomposition of propylene carbonate (PC) on a graphite anode in PC base electrolyte with catechol carbonate

被引:15
|
作者
Wang, CX [1 ]
Nakamura, H
Komatsu, H
Noguchi, H
Yoshio, M
Yoshitake, H
机构
[1] Saga Univ, Dept Appl Chem, Saga 8408502, Japan
[2] Ube Ind Ltd, Battery Mat Dept, Tokyo 1400002, Japan
来源
DENKI KAGAKU | 1998年 / 66卷 / 03期
关键词
lithium secondary battery; graphite; organic electrolyte; decomposition of PC;
D O I
10.5796/kogyobutsurikagaku.66.286
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electrochemical decomposition of propylene carbonate(PC) on a graphite electrode in 1 M (M=mol.dm(-3)) LiPF6/PC-DEC(1:I in volume ratio) or PC-DMC(1:1) is suppressed remarkably by an addition of more than 0.5 wt.% catechol carbonate, or 3-methylcatechol carbonate or 4-methylcatechol carbonate. These compounds have possibility to act as radical scavenger for FC radical. A lithium ion battery composed of LiCoO2, MCMB6-28(graphitized mesocarbon microbeads) and 1 Nf LiPF6/PC-DEC(1:1) or PC-DMC(1:1) containing 2 wt.% 3-methylcatechol carbonate shows a reversible capacity of 90 mAh/g-LiCoO2. Namely catechol carbonate and analogs could be used as additives for lithium ion batteries with PC base electrolyte.
引用
收藏
页码:286 / 292
页数:7
相关论文
共 50 条
  • [31] Graphite@MoO3 composite as anode material for lithium ion battery in propylene carbonate-based electrolyte
    Yang, L. C.
    Guo, W. L.
    Shi, Y.
    Wu, Y. P.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 501 (02) : 218 - 220
  • [32] Phase Equilibrium and Physical Properties for the Purification of Propylene Carbonate (PC) and γ-Butyrolactone (GBL)
    Mathuni, Tobias
    Kim, Jae-Ik
    Park, So-Jin
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2011, 56 (01): : 89 - 96
  • [33] Electrochemical behavior of graphite anode at elevated temperatures in organic carbonate solutions
    Levi, MD
    Wang, C
    Gnanaraj, JS
    Aurbach, D
    JOURNAL OF POWER SOURCES, 2003, 119 : 538 - 542
  • [34] In situ investigation of the electrochemical reduction of carbonate electrolyte solutions at graphite electrodes
    Imhof, R
    Novak, P
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (04) : 1081 - 1087
  • [35] Electrochemical behaviour of a graphite electrode in propylene carbonate and 1,3-benzodioxol-2-one based electrolyte system
    Wang, CX
    Nakamura, H
    Komatsu, H
    Yoshio, M
    Yoshitake, H
    JOURNAL OF POWER SOURCES, 1998, 74 (01) : 142 - 145
  • [36] Designing Low-Concentration Propylene Carbonate-based Electrolyte by Manipulating Lithium+-Solvation Structure for Graphite Anode
    Guan, Dichang
    Hu, Guorong
    Peng, Zhongdong
    Cao, Yanbing
    Gan, Zhanggen
    Zhang, Xudong
    Du, Ke
    BATTERIES & SUPERCAPS, 2022, 5 (10)
  • [37] Electrochemical intercalation of lithium ion within graphite from propylene carbonate solutions
    Jeong, SK
    Inaba, M
    Iriyama, Y
    Abe, T
    Ogumi, Z
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (01) : A13 - A15
  • [38] ELECTROCHEMICAL REDUCTION OF POTASSIUM FROM KCL IN PROPYLENE CARBONATE ELECTROLYTE WITH ALUMINUM ANODES
    ATANASOSKI, RT
    LAW, HH
    TOBIAS, CW
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 1986, 16 (03) : 339 - 344
  • [39] KPF6 dissolved in propylene carbonate as an electrolyte for activated carbon/graphite capacitors
    Wang, Hongyu
    Yoshio, Masaki
    JOURNAL OF POWER SOURCES, 2010, 195 (04) : 1263 - 1265
  • [40] TPD-GC/MS analysis of the solid electrolyte interface (SEI) on a graphite anode in the propylene carbonate/ethylene sulfite electrolyte system for lithium batteries
    Ota, H
    Sato, T
    Suzuki, H
    Usami, T
    JOURNAL OF POWER SOURCES, 2001, 97-8 : 107 - 113