Global Mittag-Leffler stability analysis of fractional-order impulsive neural networks with one-side Lipschitz condition

被引:35
|
作者
Zhang, Xinxin [1 ]
Niu, Peifeng [1 ]
Ma, Yunpeng [1 ]
Wei, Yanqiao [1 ]
Li, Guoqiang [1 ]
机构
[1] Yanshan Univ, Sch Elect Engn, Qinhuangdao 066001, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional-order neural networks; Mittag-Leffler stability; Impulses; One-side Lipschitz condition; SYNCHRONIZATION; CHAOS; BIFURCATION; DELAYS;
D O I
10.1016/j.neunet.2017.06.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper is concerned with the stability analysis issue of fractional-order impulsive neural networks. Under the one-side Lipschitz condition or the linear growth condition of activation function, the existence of solution is analyzed respectively. In addition, the existence, uniqueness and global Mittag-Leffler stability of equilibrium point of the fractional-order impulsive neural networks with one-side Lipschitz condition are investigated by the means of contraction mapping principle and Lyapunov direct method. Finally, an example with numerical simulation is given to illustrate the validity and feasibility of the proposed results. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:67 / 75
页数:9
相关论文
共 50 条
  • [21] Mittag-Leffler stability analysis of multiple equilibrium points in impulsive fractional-order quaternion-valued neural networks
    K. Udhayakumar
    R. Rakkiyappan
    Jin-de Cao
    Xue-gang Tan
    Frontiers of Information Technology & Electronic Engineering, 2020, 21 : 234 - 246
  • [22] Mittag-Leffler stability analysis of multiple equilibrium points in impulsive fractional-order quaternion-valued neural networks
    Udhayakumar, K.
    Rakkiyappan, R.
    Cao, Jin-de
    Tan, Xue-gang
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2020, 21 (02) : 234 - 246
  • [23] Global Mittag-Leffler Stability and Stabilization Analysis of Fractional-Order Quaternion-Valued Memristive Neural Networks
    Rajchakit, Grienggrai
    Chanthorn, Pharunyou
    Kaewmesri, Pramet
    Sriraman, Ramalingam
    Lim, Chee Peng
    MATHEMATICS, 2020, 8 (03)
  • [24] Mittag-Leffler Stability of Impulsive Nonlinear Fractional-Order Systems with Time Delays
    Mathiyalagan, K.
    Ma, Yong-Ki
    IRANIAN JOURNAL OF SCIENCE, 2023, 47 (01) : 99 - 108
  • [25] Multiple Mittag-Leffler stability and locally asymptotical ω-periodicity for fractional-order neural networks
    Wan, Liguang
    Wu, Ailong
    NEUROCOMPUTING, 2018, 315 : 272 - 282
  • [26] Global Mittag-Leffler stabilization of fractional-order bidirectional associative memory neural networks
    Wu, Ailong
    Zeng, Zhigang
    Song, Xingguo
    NEUROCOMPUTING, 2016, 177 : 489 - 496
  • [27] Boundedness, Mittag-Leffler stability and asymptotical ω-periodicity of fractional-order fuzzy neural networks
    Wu, Ailong
    Zeng, Zhigang
    NEURAL NETWORKS, 2016, 74 : 73 - 84
  • [28] Novel Inequalities to Global Mittag-Leffler Synchronization and Stability Analysis of Fractional-Order Quaternion-Valued Neural Networks
    Xiao, Jianying
    Cao, Jinde
    Cheng, Jun
    Wen, Shiping
    Zhang, Ruimei
    Zhong, Shouming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (08) : 3700 - 3709
  • [29] Mittag-Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field
    Pratap, Anbalagan
    Raja, Ramachandran
    Alzabut, Jehad
    Cao, Jinde
    Rajchakit, Grienggrai
    Huang, Chuangxia
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (10) : 6223 - 6253
  • [30] Mittag-Leffler synchronization and stability analysis for neural networks in the fractional-order multi-dimension field
    Xiao, Jianying
    Li, Yongtao
    Wen, Shiping
    KNOWLEDGE-BASED SYSTEMS, 2021, 231 (231)