Bayesian exponential random graph models with nodal random effects

被引:29
|
作者
Thiemichen, S. [1 ]
Friel, N. [2 ]
Caimo, A. [3 ]
Kauermann, G. [1 ]
机构
[1] Univ Munich, Inst Stat, Ludwigstr 33, D-80539 Munich, Germany
[2] Univ Coll Dublin, Natl Ctr Data Analyt, Sch Math & Stat & Insight, Dublin, Ireland
[3] Dublin Inst Technol, Sch Math Sci, Dublin, Ireland
基金
瑞士国家科学基金会; 爱尔兰科学基金会;
关键词
Exponential random graph models; Bayesian inference; Random effects; Network analysis; P-ASTERISK MODELS; FAMILY MODELS; LIKELIHOOD; SELECTION;
D O I
10.1016/j.socnet.2016.01.002
中图分类号
Q98 [人类学];
学科分类号
030303 ;
摘要
We extend the well-known and widely used exponential random graph model (ERGM) by including nodal random effects to compensate for heterogeneity in the nodes of a network. The Bayesian framework for ERGMs proposed by Caimo and Friel (2011) yields the basis of our modelling algorithm. A central question in network models is the question of model selection and following the Bayesian paradigm we focus on estimating Bayes factors. To do so we develop an approximate but feasible calculation of the Bayes factor which allows one to pursue model selection. Three data examples and a small simulation study illustrate our mixed model approach and the corresponding model selection. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:11 / 28
页数:18
相关论文
共 50 条
  • [31] Auxiliary Parameter MCMC for Exponential Random Graph Models
    Maksym Byshkin
    Alex Stivala
    Antonietta Mira
    Rolf Krause
    Garry Robins
    Alessandro Lomi
    Journal of Statistical Physics, 2016, 165 : 740 - 754
  • [32] Exponential random graph models for networks with community structure
    Fronczak, Piotr
    Fronczak, Agata
    Bujok, Maksymilian
    PHYSICAL REVIEW E, 2013, 88 (03)
  • [33] A note on perfect simulation for Exponential Random Graph Models
    Cerqueira, Andressa
    Garivier, Aurelien
    Leonardi, Florencia
    ESAIM-PROBABILITY AND STATISTICS, 2020, 24 : 138 - 147
  • [34] Inferential Network Analysis with Exponential Random Graph Models
    Cranmer, Skyler J.
    Desmarais, Bruce A.
    POLITICAL ANALYSIS, 2011, 19 (01) : 66 - 86
  • [35] Asymptotic Structure of Constrained Exponential Random Graph Models
    Lingjiong Zhu
    Journal of Statistical Physics, 2017, 166 : 1464 - 1482
  • [36] TYPICAL STRUCTURE OF SPARSE EXPONENTIAL RANDOM GRAPH MODELS
    Cook, Nicholas A.
    Dembo, Amir
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (03): : 2885 - 2939
  • [37] Outliers and Influential Observations in Exponential Random Graph Models
    Johan Koskinen
    Peng Wang
    Garry Robins
    Philippa Pattison
    Psychometrika, 2018, 83 : 809 - 830
  • [38] CONSISTENCY UNDER SAMPLING OF EXPONENTIAL RANDOM GRAPH MODELS
    Shalizi, Cosma Rohilla
    Rinaldo, Alessandro
    ANNALS OF STATISTICS, 2013, 41 (02): : 508 - 535
  • [39] Exponential random graph models of preschool affiliative networks
    Daniel, Joao R.
    Santos, Antonio J.
    Peceguina, Ines
    Vaughn, Brian E.
    SOCIAL NETWORKS, 2013, 35 (01) : 25 - 30
  • [40] Outliers and Influential Observations in Exponential Random Graph Models
    Koskinen, Johan
    Wang, Peng
    Robins, Garry
    Pattison, Philippa
    PSYCHOMETRIKA, 2018, 83 (04) : 809 - 830