Uncover aldehydes in biomass hydrolyzates: disproportionation of aldehydes in alkaline solution and subsequent measurement using an automated HPAEC-PAD method
High-performance anion exchange chromatography coupled to pulsed amperometric detection (HPAEC-PAD) was used for developing a method for identifying and quantifying aldehydes in biomass hydrolyzates. This method was optimized to the requirements of HPAEC-PAD in order to allow for a simultaneous determination of aldehydes by respective Cannizzaro alcohols. To this end, sodium hydroxide concentration (0.1 to 5.0 mol/L), temperature (30 to 40 degrees C), and reaction time (0 to 24 h) were investigated for sufficient and reproducible disproportionation of the biomass-derived aldehydes. The optimized method for aldehyde disproportionation and subsequent measurement are 1 mol/L sodium hydroxide, 40 degrees C, and 1 h reaction time. The detection limits resulting from this method are lower than 68.55 mg/L and the sensitivity above 0.024 (nC min)/(mg/L) for 3,4-dimethoxybenzaldehyde. Linearity for aldehyde calibration always exceeded 0.98. Thus, HPAEC-PAD analysis allows for the quantification of biomass-derived compounds from all natural polymers and, therefore, it has exemplarily been used to quantify aldehyde concentration of beech wood, orange peel, and algae biomass hydrolyzates. Graphical abstract